Advertisement for orthosearch.org.uk
Results 1 - 13 of 13
Results per page:
Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 136 - 136
1 Jul 2014
Penny J Ding M Ovesen O Varmarken J Overgaard S
Full Access

Summary

Despite high revision rates, the mean two year migration of the ASRTM cup is within an acceptable threshold. Slightly higher migration rates found for the M2a- Magnum™ Porous Coated Acetabular Component but longer follow up is needed to establish if this implant is at risk.

Introduction

RSA can detect the migration of an implant, and continuous migration is a predictor for failure (1). The ASRTM resurfacing implant was withdrawn from the marked due to excessive failure rate but showed initial femoral component stability. The aim of this study was to investigate the initial implant stability for the ASR cup as a possible explanation for the high revision rate, and to compare it to another metal on metal (MoM) cup.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 132 - 132
4 Apr 2023
Callary S Abrahams J Zeng Y Clothier R Costi K Campbell D Howie D Solomon L
Full Access

First-time revision acetabular components have a 36% re-revision rate at 10 years in Australia, with subsequent revisions known to have even worse results. Acetabular component migration >1mm at two years following revision THA is a surrogate for long term loosening. This study aimed to measure the migration of porous tantalum components used at revision surgery and investigate the effect of achieving press-fit and/or three-point fixation within acetabular bone. Between May 2011 and March 2018, 55 patients (56 hips; 30 female, 25 male) underwent acetabular revision THR with a porous tantalum component, with a post-operative CT scan to assess implant to host bone contact achieved and Radiostereometric Analysis (RSA) examinations on day 2, 3 months, 1 and 2 years. A porous tantalum component was used because the defects treated (Paprosky IIa:IIb:IIc:IIIa:IIIb; 2:6:8:22:18; 13 with pelvic discontinuity) were either deemed too large or in a position preventing screw fixation of an implant with low coefficient of friction. Press-fit and three-point fixation of the implant was assessed intra-operatively and on postoperative imaging. Three-point acetabular fixation was achieved in 51 hips (92%), 34 (62%) of which were press-fit. The mean implant to host bone contact achieved was 36% (range 9-71%). The majority (52/56, 93%) of components demonstrated acceptable early stability. Four components migrated >1mm proximally at two years (1.1, 3.2, 3.6 and 16.4mm). Three of these were in hips with Paprosky IIIB defects, including 2 with pelvic discontinuity. Neither press-fit nor three-point fixation was achieved for these three components and the cup to host bone contact achieved was low (30, 32 and 59%). The majority of porous tantalum components had acceptable stability at two years following revision surgery despite treating large acetabular defects and poor bone quality. Components without press-fit or three-point fixation were associated with unacceptable amounts of early migration


Bone & Joint Research
Vol. 4, Issue 5 | Pages 78 - 83
1 May 2015
Martinkevich P Rahbek O Møller-Madsen B Søballe K Stilling M

Objectives. Lengthening osteotomies of the calcaneus in children are in general grafted with bone from the iliac crest. Artificial bone grafts have been introduced, however, their structural and clinical durability has not been documented. Radiostereometric analysis (RSA) is a very accurate and precise method for measurements of rigid body movements including the evaluation of joint implant and fracture stability, however, RSA has not previously been used in clinical studies of calcaneal osteotomies. We assessed the precision of RSA as a measurement tool in a lateral calcaneal lengthening osteotomy (LCLO). Methods. LCLO was performed in six fixed adult cadaver feet. Tantalum markers were inserted on each side of the osteotomy and in the cuboideum. Lengthening was done with a plexiglas wedge. A total of 24 radiological double examinations were obtained. Two feet were excluded due to loose and poorly dispersed markers. Precision was assessed as systematic bias and 95% repeatability limits. Results. Systematic bias was generally below 0.10 mm for translations. Precision of migration measurements was below 0.2 mm for translations in the osteotomy. Conclusion. RSA is a precise tool for the evaluation of stability in LCLO. Cite this article: Bone Joint Res 2015;4:78–83


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 4 - 4
1 Mar 2021
Bragonzoni L Cardinale U Bontempi M Di Paolo S Zinno R Alesi D Muccioli G Pizza N Di Sarsina T Agostinone P Zaffagnini S
Full Access

Physiological kinematics is very difficult to restore after total knee arthroplasty (TKA). A new model of medial stabilized (MS) TKA prosthesis has a high spherical congruence of the internal compartment, which guarantees anteroposterior (AP) stability associated with a flat surface of the insert in the lateral compartment, that allows a greater AP translation of the external condyle during knee flexion. The aim of our study is to evaluate, by dynamic radiostereometric analysis (RSA), the knee in vivo kinematics after the implantation of a MS prosthesis during sit to stand and lunge movements. To describe the in vivo kinematics of the knee after MS Fixed Bearing TKA (GMK Sphere (TM) Medacta International AG, Castel San Pietro, Switzerland) using Model Based dynamic RSA. A cohort of 18 patients (72.1 ± 7.4 years old) was evaluated by dynamic RSA 9 months after TKA. The kinematic evaluation was carried out using the dynamic RSA tool (BI-STAND DRX 2), developed at our Institute, during the execution of sit to stand and lunge movements. The kinematic data were processed using the Grood and Suntay decomposition and the Low Point method. The patients performed two motor tasks: a sit-to-stand and a lunge. Data were related to the flexion angle versus internal-external, varus-valgus rotations and antero-posterior translations of the femur with respect to the tibia. During the sit to stand, the kinematic analysis showed the presence of a medial pivot, with a significantly greater (p=0.0216) anterior translation of the lateral condyle (3.9 ± 0.8 mm) than the medial one (1.6 ± 0.8 mm) associated with a femoral internal rotation (4.5 ± 0.9 deg). During the lunge, in the flexion phase, the lateral condyle showed a larger posterior translation than the medial one (6.2 ± 0.8 mm vs 5.3 ± 0.8 mm) associated with a femoral external rotation (3.1 ± 0.9 deg). In the extension phase, there is a larger anterior translation of the lateral condyle than the medial one (5.8 ± 0.8 mm vs 4.6 ± 0.8 mm) associated with femoral internal rotation (6.2 ± 0.9 deg). Analysing individual kinematics, we also found a negative correlation between clinical scores and VV laxity during sit to stand (R= −0.61) and that the higher femoral extra-rotation, the poorer clinical scores (R= 0.65). The finding of outliers in the VV and IE rotations analysis highlights the importance of a correct soft tissue balancing in order to allow the prosthetic design to manifest its innovative features


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 139 - 139
1 Jul 2014
Ayers D Snyder B Porter A Walcott M Aubin M Drew J Greene M Bragdon C
Full Access

Summary Statement. In young, active patients cementless THR demonstrates excellent prosthetic stability by RSA and outstanding clinical outcomes at 5 years using a tapered titanium femoral stem, crosslinked polyethylene liners and either titanium or tantalum shells. Introduction. Early femoral implant stability is essential to long-term success in total hip replacement. Radiostereometric analysis (RSA) provides precise measurements of micromotion of the stem relative to the femur that are otherwise not detectable by routine radiographs. This study characterised micromotion of a tapered, cementless femoral stem and tantalum porous-coated vs. titanium acetabular shells in combination with highly cross-linked UHMWPE or conventional polyethylene liners using radiostereometric analysis (RSA) for 5 years following THR. Patients and Methods. This IRB-approved, prospective, double randomised, blinded study, involved 46 patients receiving a primary THR by a single surgeon. Each patient was randomised to receive a titanium (23) (Trilogy, Zimmer) or tantalum (23) (Modular Tantalum shell, Zimmer) uncemented hemispheric shell and either a highly-crosslinked or conventional polyethylene liner. Tantalum RSA markers were implanted in each patient. All patients had a Dorr A or B femoral canal and received a cementless, porous-coated titanium tapered stem (M/L Taper, Zimmer). All final femoral broaches were stable to rotational and longitudinal stress. RSA examinations, Harris Hip, UCLA, WOMAC, SF-12 scores were obtained at 10 days, 6 months, and annually through 5 years. Results. All patients demonstrated statistically significant improvement in Harris Hip, WOMAC, and SF-12 PCS scores post-operatively. Evaluation of polyethylene wear demonstrated that median penetration measurements were significantly greater in the conventional compared to the HXPLE liner cohorts at 1 year through 5 years follow-up (p<0.003). At 5 years, conventional liners showed 0.38 ± 0.05mm vertical wear whereas HXLPE liners showed 0.08 ± 0.02mm (p<0.003). Evaluation of the femoral stems demonstrated that the rate of subsidence was highest in the first 6 months (0.09mm/yr), with no other detectable motion through 5 years. Two outlying patients had significantly higher stem subsidence values at 6 months (0.7 mm and 1.0mm). One stem stabilised without further subsidence after 6 months (0.7mm), and the other stem stabilised at 1 year (1.5mm). Neither patient has clinical evidence of loosening. Evaluation of acetabular shells demonstrated less median vertical translation in tantalum than titanium shells at each time-point except at 3-years follow-up, however due to large standard errors, there was no significant difference between the two designs (p>0.05). These large standard errors were predominantly caused by two outliers, neither of which had clinical evidence of loosening. Discussion/Conclusion. In this RSA study of young THR patients, cementless tapered femoral stems, highly crosslinked polyethylene liners, and tantalum or titanium acetabular shells all demonstrated excellent performance through 5 years follow-up. Highly crosslinked polyethylene liners demonstrated significantly less wear than conventional liners. The femoral stem showed excellent stability through 5 years, with no clinical or radiologic episodes of failure. The small amount of micromotion seen is less than that previously reported for similar tapered, cementless stems and approaches the accuracy of RSA (0.05mm). Both acetabular shells demonstrated excellent stability with minimal micromotion at 5 years without significant differences in migration. All patients demonstrated significant clinical improvement in pain and function and additional RSA evaluation of these patients is planned


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 109 - 109
1 Jan 2017
van Hamersveld K Valstar E Toksvig-Larsen S
Full Access

Whether it is best to retain the posterior cruciate ligament in the degenerated knee, i.e. using a cruciate-retaining (CR) total knee prosthesis (TKP), or to use a more constraint posterior-stabilized (PS) TKP is of debate. There are limited studies comparing the effect of both methods on implant fixation and clinical outcome, leaving it up to the surgeon to base this decision on anything but conclusive evidence. We assessed the effect of two different philosophies in knee arthroplasty on clinical outcome and tibial component migration measured with radiostereometric analysis (RSA), by directly comparing the CR and PS version of an otherwise similarly designed cemented TKP. Sixty patients were randomized and received a Triathlon TKP (Stryker, NJ, USA) of either CR (n=30) or PS (n=30) design. RSA measurements (primary outcome) and clinical scores including the Knee Society Score and Knee injury and Osteoarthritis Outcome Score were evaluated at baseline, at three months postoperatively and at one, two, five and seven years. A linear mixed-effects model was used to analyse the repeated measurements. Both groups showed a similar implant migration pattern, with a maximum total point motion at seven years follow-up of around 0.8 mm of migration (mean difference between groups 95% CI −0.11 to 0.15mm, p=0.842). Two components (one of each group) were considered to have an increased risk of aseptic loosening. Both groups improved equally after surgery on the KSS and KOOS scores and no differences were seen during the seven years of follow-up. No differences in implant migration nor clinical results were seen seven years after cruciate-retaining compared to posterior-stabilized total knee prostheses


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 1 | Pages 169 - 172
1 Jan 1998
Jorn LP Fridén T Ryd L Lindstrand A

We obtained simultaneous measurements of sagittal knee laxity in 12 consecutive patients after reconstruction of the anterior cruciate ligament (ACL), using the Stryker laxity tester and radiostereometric analysis (RSA). The mean anteroposterior (AP) displacement when a 90 N load was applied in both directions was 5.3 ± 2.7 mm with RSA and 9.8 ± 1.6 mm with the external device (p < 0.001). The corresponding measurements at a load of 180 N were 5.7 ± 2.4 mm and 13.8 ± 3.7 mm, respectively (p < 0.001). More than 50% of the sagittal knee movement, as measured by the external device at a load of 180 N, was not true femorotibial displacement of the joint but was due to soft-tissue deformation


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 227 - 227
1 Jul 2014
Solomon L Callary S Mitra A Pohl A
Full Access

Summary. Application of RSA in supine and standing positions allows pelvic fracture stability to be measured more accurately than current techniques. RSA may enable a better understanding of these injuries. Introduction. The in vivo stability of the pelvic ring after fracture stabilisation remains unknown. Plain radiographs have a low accuracy in diagnosing loss of fracture reduction over time. Radiostereometric analysis (RSA) is an accurate imaging measurement method that has previously been applied to measure the healing of other fractures. This pilot study investigated the potential application of RSA in supine and standing positions to measure pelvic fracture stability over time and under weightbearing load. Methods. Five patients with a similar type C pelvic ring disruption who were all operated on using the same surgical technique and had RSA markers inserted at the time of surgery. All five patients had a unilateral comminuted sacral fracture lateral to the sacral foramina treated with posterior plating and pubic rami fractures stabilised by external fixation for six weeks. All patients were mobilised partial weight bearing after regaining leg control. RSA examinations at 2, 4, 12, 26 and 52 weeks included three radiographic pairs taken in supine, standing and supine positions at each time point. Two additional RSA examinations were performed the day prior and post pin removal at 6 weeks. Results. All patients ambulated before the 2 week follow-up and progressed uneventfully. At latest follow-up, there were no complications. Minimal displacements (translations less than 0.3mm and rotations less than 0.5°) were recorded between the supine exams pre and post standing at 2 weeks. Hence, the supine examination was found to be a reliable position to measure the migration of the ilium over time. No loss of reduction was identifiable on plain radiographs over time. At 52 weeks, in contrast to plain radiographic results, RSA measurements revealed that one patient had a fracture migration greater than 4mm. Such large displacements could result in sacral nerve root transection, leading to devastating consequences, such as incontinence, for patients whose sacral fractures are through or medial to the sacral foramina. In one patient, the migration recorded for the apparent uninjured posterior complex side exceeded the migration of the injured side suggesting an unrecognised bilateral injury. Comparative RSA examinations pre and post external fixator removal demonstrated that in three patients the injured hemipelvis migrated greater than 2mm after the removal of the external fixator, which may be indicative that the fixator was removed prematurely. Discussion and Conclusion. The application of RSA allows accurate measurement of pelvic fracture stability which is difficult, if not impossible, to identify and quantify with any other imaging techniques. Hence, RSA has the capacity to enable a better understanding of pelvic ring injuries and optimise their treatment


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 105 - 105
1 Aug 2012
Downing M Hutchison J Ashcroft G
Full Access

Prosthesis migration and acetabular cup wear are useful short term measurement which may predict later implant outcome. However, the significance of the magnitude and pattern of the migration is very much dependent on the specific design studied. This study aimed to characterise patterns of migration by following four cemented femoral stem designs using Radiostereometry (RSA) within a prospective randomised longitudinal trial. 164 patients undergoing cemented femoral hip replacement for osteoarthritis were randomised to receive either an Exeter (Howmedica Stryker), Ultima Tapered Polished Stem (TPS) (Depuy), Ultima Straight Stem (USS) (Johnson and Johnson) or Elite Plus (Depuy) stem. Each subject received the OGEE PE cemented acetabular component (Depuy). RSA examinations were performed at 1 week and 6, 12, 18, 24 and 60 months post surgery. They were analysed using the UMRSA system (RSA Biomedical AB, Umea, Sweden), and our local geometric stem measurement software. 149 patients had RSA measurements available to 2 years, and 96 patients to 5 years. Differences were analysed using mixed linear modelling (SPSS). Median linear proximal cup wear rate reduced to a minimum of 0.02-0.06mm/year in year two. Between 2 and 5 years the wear rate increased, being significantly higher for the Elite. Cup migration was small but continuous. At 2 years it was median 0.3mm proximally, increasing to 0.5 mm at 5 years. Median rotations were less than 0.3 degrees. Proximal migration was positive and increasing at all time points for all stems. For the tapered polished designs, while the overall magnitude was significantly higher, the rate of migration significantly decreased, whereas for the other stem designs it did not. The TPS stem showed a tendency for posterior tilt which was significant compared to the other stems at 5 years. All stems tended to retroversion, with the USS significantly less than the others and the Elite showing and relative increase at 5 years. In summary migration patterns are characterised by the stem design, including where there were only small changes between designs. We are now testing measured migrations as predictors of outcome, and will continue to follow this group of patients to 10 years


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 45 - 45
1 Jul 2014
Vanhegan I Coathup M McCarthy I Haddad F Blunn G
Full Access

Summary Statement. Proximal femoral bony deficits present a surgical and biomechanical challenge to implant longevity in revision hip arthroplasty. This work finds comparable primary stability when a distally fixing tapered fluted stem was compared with a conical design in cadaveric tests. Introduction. Proximal bony deficits complicate revision hip surgery and compromise implant survival. Longer distally fixing stems which bypass such defects are therefore required to achieve stability compatible with bony ingrowth and implant longevity. Aims. It is hypothesised that a tapered stem will provide superior rotational stability to a conical design. This work therefore aims to compare the primary stability and biomechanical properties of a new design of tapered fluted modular femoral stem (Redapt®, Smith & Nephew) with that of a conical fluted stem (Restoration®, Stryker). Materials & Methods. 7 Pairs of cadaveric femora were obtained according to strict inclusion/exclusion criteria. Each underwent dual energy x-ray absorptiometry and calibration plain-film radiographs were taken. Digital templating was performed using TraumaCad (Voyant Health, Brainlab) to determine implant sizing. Both stems are fluted, modular and manufactured from titanium. The control stem (Restoration) featured a straight conical design and the investigation stem (Redapt) a straight tapered design. Implantation was performed by a revision arthroplasty surgeon familiar with both systems. Proximal bone deficiency was reproduced using an extended trochanteric osteotomy with removal of metaphyseal bone before reattaching the osteotomy. Primary stability in the axial, sagittal and coronal planes was assessed using micromotion transducers (HBM, Darmstadt, Germany) and also by Radiostereometric Analysis (RSA). RSA employs simultaneous biplanar radiographs to measure relative movement. Two 1mm tantalum beads were mounted on the prosthesis with the centre of the femoral head taken as the third reference point. Beads were placed proximally in the surrounding bone as rigid body markers. Each bone was potted according to the ISO standard for fatigue testing and cyclically loaded at 1Hz for at least 3 increments (750–350N, 1000–350N, 1500–350N) for 1000 cycles. RSA radiographs were taken at baseline and on completion of each cycle. A strain analysis was concurrently performed using a PhotoStress® (Vishay Precision Group, Raleigh, USA) photoelastic coating on the medial femoral cortex. Each bone was loaded intact and then with the prosthesis in-situ at 500N increments until strain fringes were identified. Once testing was completed, the stems were sectioned at the femoral isthmus and data is presented on the cross-sectional fit and fill observed. Results. Both stem designs showed comparable primary stability with all stems achieving clinically acceptable micromotion (<150 μm) when loaded at body weight. A larger proportion of the control stems remained stable as loading increased to x2-3 body weight. Transducer-recorded migration appeared greatest in the axial plane (y axis) with negligible distal movement in the coronal or sagittal planes. Point motion analysis (RSA) indicated most movement to be in the coronal plane (x-axis) whereas segment motion analysis showed rotation about the long axis of the prosthesis to be largest. Photoelastic strain patterns were transferred more distally in both designs, however substantial stress shielding was also observed. Discussion/Conclusion. Both designs achieved adequate distal fixation and primary stability under representative clinical loading conditions. This work supports the continued use of this novel stem design for revision surgery in the presence of extensive proximal bone loss


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 142 - 142
1 Jul 2014
Mohaddes M Malchau H Herberts P Johansson P Kärrholm J
Full Access

Summary Statement. We analysed impaction bone grafting used together with cemented or uncemented fixation in acetabular revision surgery. The overall risk for re-revision did not differ between the cemented and uncemented group. However, aseptic loosening was more common in the cemented group. Background. Several surgical techniques address bone defects in cup revision surgery. Bone impaction grafting, introduced more than thirty years ago, is a biologically and mechanically appealing method. The primary aim of this study was to evaluate the effect of bone impaction grafting when used with uncemented and cemented fixation in cup revision surgery. Uncemented cups resting on more than 50% host bone were used as controls. Patient and Methods. Cup fixation was studied in ninety hips (eighty-two patients), revised due to loosening between 1993 and 1997. There were fifty-three isolated cup and thirty-seven total revisions. Patients were followed for thirteen years using conventional radiography, radiostereometry (RSA), Harris Hip score and a pain questionnaire. Peroperatively the surgeon assessed the acetabular bone bed vitality. In hips where the cup was judged to rest on > 50% vital bone (group I, n=43), an uncemented cup was used. If the cup was resting on ≤ 50% living bone, uncemented (group IIa, n=21,) or cemented (group IIb, n=26) technique was chosen, according to the surgeon's preference. The mean age of patients at index revision was 61±12 years, 56% were females. The most common index diagnosis was primary osteoarthritis (n=45) followed by rheumatoid arthritis (n=10). Results. At thirteen years, acetabular component failure had necessitated a second revision in 6/7/8 hips in Groups I/IIa/IIb respectively. These re-revisions were performed 1–10 (mean 7.1) years after index revision. Moreover four cup / liner revisions were performed in hips with femoral loosening, not allowing further RSA measurements. These twenty-five hips were followed until re-revision. Deceased patients (n=21) and patients with deteriorating medical condition, not able to attend the follow-up (n=7), were censored in the survival statistics. Aseptic loosening was the most common reason of re-revision. However, in the uncemented groups (I/IIa), four cups were re-revised due to liner wear, osteolysis or instability. In the total study population, and up to two years, the median proximal migration was lowest in Group I followed by Group IIa and Group IIb (p≤0,006). At thirteen years the mean proximal migration was highest in Group IIb 1.29 mm (SD 1.23) followed by Group I 0.30 mm (SD 0.40) and Group IIa 0.22 mm (SD 0.22), p = 0.05. In cases subsequently re-revised because of loosening or with radiographically loose cups at the last follow-up, a higher proximal migration was observed compared to the non-revised and radiographically well-fixed group (up to seven years: p < 0.001; thirteen years: p=0.04). Discussion/Conclusion. We found an increased risk for rerevision in cases with less than 50% host bone-implant contact. These cups showed high early proximal migration, measured by RSA, indicating poor initial fixation. Rate of re-revision due to any reason did not differ between cemented and uncemented cups. The cemented group (IIb) had a higher risk of being re-revised due to aseptic loosening. Poor bone stock, use of small bone chips, inferior impaction technique, and no or restricted contact with living bone are probable reasons for failures when extensive bone grafting is needed


Bone & Joint 360
Vol. 3, Issue 4 | Pages 35 - 38
1 Aug 2014
Hammerberg EM


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 5 | Pages 741 - 744
1 May 2005
Beaulé PE Krismer M Mayrhofer P Wanner S Le Duff M Mattesich M Stoeckl B Amstutz HC Biedermann R

Studies on the migration of an implant may be the only way of monitoring the early performance of metal-on-metal prostheses. The Ein Bild Roentgen Analyse - femoral component analysis (EBRA-FCA) method was adapted to measure migration of the femoral component in a metal-on-metal surface arthroplasty of the hip using standard antero-posterior radiographs. In order to determine the accuracy and precision of this method a prosthesis was implanted into cadaver bones. Eleven series of radiographs were used to perform a zero-migration study. After adjustment of the femoral component to simulate migration of 3 mm the radiographs were repeated. All were measured independently by three different observers.

The accuracy of the method was found to be ± 1.6 mm for the x-direction and ± 2 mm for the y-direction (95% percentile). The method was validated using 28 hips with a minimum follow-up of 3.5 years after arthroplasty. Seventeen were sound, but 11 had failed because of loosening of the femoral component. The normal (control) group had a different pattern of migration compared with that of the loose group. At 29.2 months, the control group showed a mean migration of 1.62 mm and 1.05 mm compared with 4.39 mm and 4.05 mm in the failed group, for the centre of the head and the tip of the stem, respectively (p = 0.001). In the failed group, the mean time to migration greater than 2 mm was earlier than the onset of clinical symptoms or radiological evidence of failure, 19.1 versus 32.2 months (p = 0.001) and 24.8 months (p = 0.012), respectively.

EBRA-FCA is a reliable and valid tool for measuring migration of the femoral component after surface arthroplasty and can be used to predict early failure of the implant. It may be of value in determining the long-term performance of surface arthroplasty.