Advertisement for orthosearch.org.uk
Results 1 - 20 of 29
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_15 | Pages 29 - 29
1 Dec 2021
Visperas A Piuzzi N Ju M Wickramasinghe S Anis H Milbrandt N Tsai YH Klika AK Barsoum W Samia A Higuera-Rueda C
Full Access

Aim. Periprosthetic joint infection (PJI) is a devastating complication of total joint arthroplasty. While research has focused on developing better tests for disease diagnosis, treatment options have stayed relatively constant over the years with high failure rates ranging from 30%–50% and are due in part to the protective biofilm produced by some bacterial species. Current treatment options are compromised by the presence of biofilm, emphasizing the need for novel treatment strategies to be developed. Our group has developed a novel treatment (PhotothermAA) which has demonstrated in vitro its ability to target bacterial biofilm. The purpose of this study was to test this PhotothermAA technology in vivo in a rabbit model of PJI for its efficacy in eradicating biofilm. Method. Rabbits were fitted with a titanium implant into the tibial plateau and inoculated with 5×10. 6. CFU Xen36 (luminescent Staphylococcus aureus). At two weeks, rabbits underwent irrigation and debridement and treatment with PhotothermAA gel for two hours and subsequently laser heated using an 808 nm laser for 10 minutes. Gel was washed out and implant was removed for quantitative biofilm coverage analysis via scanning electron microscopy (SEM, n=3 for control and n=2 for PhotothermAA treated). Periprosthetic tissue was collected before and after treatment for toxicity studies via hemotoxylin and eosin (H&E) staining and scored for necrosis by three blinded reviewers (n=5 per group). Student's t-test was used for statistical analysis. Results. Implants isolated after PhotothermAA gel treatment had less biofilm coverage on the surface of the implant compared to non-treated control via SEM analysis (36.9% vs. 55.2%, p<0.14). PhotothermAA gel treatment and subsequent laser treatment was not harmful to surrounding tissue as no increase in necrotic tissue was observed. Conclusions. PhotothermAA gel and laser treatment safely decreases biofilm coverage on infected knee implants in a rabbit PJI model


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 79 - 79
24 Nov 2023
Puetzler J Vallejo A Gosheger G Schulze M Arens D Zeiter S Siverino C Moriarty F
Full Access

Aim. The time to onset of symptoms after fracture fixation is still commonly used to classify fracture-related infections (FRI). Early infections (<2 weeks) can often be treated with debridement, systemic antibiotics, irrigation, and implant preservation (DAIR). Late infections (>10 weeks) typically require implant removal as mature, antibiotic-tolerant biofilms have formed. However, the recommendations for delayed infections (2–10 weeks) are not clearly defined. Here, infection healing and bone healing in early and delayed FRI is investigated in a rabbit model with a standardized DAIR procedure. Method. Staphylococcus aureus was inoculated into 17 rabbits after plate osteosynthesis in a humerus osteotomy. The infection developed either one week (early group, n=6) or four weeks (delayed group, n=6) before a standardized DAIR procedure and microbiological analysis were performed. Systemic antibiotics were administered for six weeks (two weeks: Nafcillin+Rifampin, four weeks: Levofloxacin+Rifampin). A control group (n=5) also underwent a revision operation (debridement and irrigation) after four weeks, but received no antibiotic treatment. Rabbits were euthanized seven weeks after the revision operation. Bone healing was assessed using a modified radiographic union score for tibial fractures (mRUST). After euthanasia, a quantitative microbiological examination of the entire humerus, adjacent soft tissues, and implants was performed. Results. All animals were infected at the time of revision surgery, with the bacterial load in the early group (especially in soft tissues) being greater than in the delayed group and control group. This indicates infiltration of bacteria into areas that are more difficult to reach after four weeks of debridement. The infection was eradicated in all animals in both the early and delayed groups at euthanasia, but not in the control group (CFU median (IQR): 2.1×10. 7. (1.3×10. 7. -2.6×10. 7. ). The osteotomy healed in the early group, while bone healing was significantly impaired in both the delayed group and control group (mRUST median (IQR): early group: 16 (14–16), delayed group: 7.5 (6–10), control: 7 (5.5–9); early vs. delayed: p=0.0411, early vs. control p=0.0065). Conclusion. The maturation of the infection between the first and fourth week does not affect the success of infection eradication in this rabbit FRI model. However, bone healing appears to be impaired with increasing duration of infection


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_14 | Pages 78 - 78
1 Dec 2019
Pützler J Alexander M Everding J Raschke MJ Arens D Zeiter S Richards GR Moriarty FT
Full Access

Aim. Focused high energy extracorporeal shockwave therapy (fhESWT) is used to support fracture healing in non-union cases and has been shown to have antibacterial effects. We trialed fhESWT as an adjunct to conventional treatment in a clinically relevant rabbit model of fracture related infection. Method. A complete humeral osteotomy was performed in 31 rabbits and fixed with a 7-hole-LCP. A fracture-related infection (FRI) was established with Staphylococcus aureus. After two weeks, a revision surgery was performed with debridement, irrigation and implant retention. Rabbits then received: no further treatment (controls); shockwaves (at day 2 and 6 after revision, 4'000 Impulses each time with 23kV); systemic antibiotics (rifampin and nafcillin) over one week in weight adjusted dosages; or the combination of antibiotics and shockwaves. Treatments were applied over one week. Blood cultures were taken before and after shockwave sessions. After an additional week without treatment, rabbits were euthanized, and quantitative bacteriology was performed on implants and tissues to determine infection burden. Indicator organs (brain, heart, liver, lungs, kidneys and spleen) were cultured to assess possible bacteraemia due to fhESWT. Results. All rabbits were infected at revision surgery as determined by bacteriological culture of debrided materials. fhESWT in combination with antibiotic treatment lowered the bacterial burden at euthanasia hundredfold compared to antibiotic treatment alone in all samples (p=0.38). This effect was most prevalent for the implant sample (p=0.08). No significant effect was seen for fhESWT alone compared to untreated controls. No signs of bacteraemia occurred. Conclusions. The additon of systemic antibiotics had the biggest effect on reduction of bacteria. Although further lowering the bacterial burden in our model the effect of fhESWT as an adjunct was not big enough to be statistically secured in this in vivo rabbit model. In certain difficult-to-treat infections the addition of fhESWT might be beneficial. The method appears to be safe in this model of acute FRI as no signs of bacteremia occurred despite the high energy and impulse number. Further investigations are needed to identify the correct indication


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_14 | Pages 79 - 79
1 Dec 2019
Arens D Zeiter S Paulin T Ranjan N Alt V
Full Access

Aim. Silver is known for its excellent antimicrobial activity, including activity against multiresistant strains. The aim of the current study was to analyze the biocompatibility and potential influence on the fracture healing process a silver-coating technology for locking plates compared to silver-free locking plates in a rabbit model. Methods. The implants used in this study were 7-hole titanium locking plates, and plasma electrolytic oxidation (PEO) silver coated equivalents. A total of 24 rabbits were used in this study (12 coated, 12 non-coated). An osteotomy of the midshaft of the humerus was created with an oscillating saw and the humerus stabilized with the 7 hole locking plates with a total of 6 screws. X-rays were taken on day 0, week 2, 4, 6, 8, and 10 for continuous radiographical evaluation of the fracture healing. All animals were euthanized after 10 weeks and further assessment was performed using X-rays, micro-CT, non-destructive four-point bending biomechanical testing and histology. Furthermore, silver concentration was measured in the kidney, liver, spleen and brain. Results. X-rays showed normal undisturbed healing of the osteotomy in all animals without any differences between the two groups over the entire X-ray analysis over 10 weeks (Figure 1). Callus formation was observed up to week 4 to 5 followed by callus remodeling after 6 weeks indicating physiological fracture healing pattern in both the silver and in the silver free group. Micro CT analysis revealed overall tissue (callus and cortical bone) volume as well as tissue density to be comparable between the two groups. Mechanical testing showed comparable stiffness with an average stiffness relative to contralateral bones of 75.7 ± 16.1% in the silver free control group compared to 69.7 ± 18.5% (p-value: 0.46). Histology showed no remarkable difference in the analysis of the healed osteotomy gap or in the surrounding soft tissue area. Silver content was found to be close to baseline values without differences between the two groups. Conclusions. This study shows that the presented antimicrobial silver surface modification for locking plates has a good biocompatibility without any negative influence on the fracture healing processes compared to the silver free control group. This allows for further clinical investigation of this silver technology for locking plates in fracture patients with an elevated infection risk, e.g. in patients with open fractures. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_9 | Pages 17 - 17
1 Feb 2013
Monsell F Bellemore M Bilston L Goodship A Barnes J
Full Access

We investigated the effect of adjuvant and neoadjuvant chemotherapy regimens on the tibial regenerate after removal of the external fixator in a rabbit model of distraction osteogenesis using New Zealand white rabbits. Forty rabbits were randomly distributed into two groups. In the neoadjuvant group, half of the rabbits received 1mg/kg cisplatinum & 2mg/kg adriamycin at eight weeks of age followed by 1mg/kg cisplatinum & 4mg/kg adriamycin at ten weeks of age. The remaining ten received an identical volume of normal saline using the same regimen. The adjuvant group differed only in the timing of the chemotherapy infusion. Half received the initial infusion ten days prior to the osteotomy, with the second infusion four days following the osteotomy. Again, the remaining ten rabbits received an identical volume of normal saline using the same regimen. This produced an identical interval between infusions and identical age at osteotomy in both groups. All rabbits underwent a tibial osteotomy at 12 weeks of age. Distraction started 24hours after osteotomy at a rate of 0.75mm a day for 10 days, followed by 18 days without correction to allow for consolidation of the regenerate. At week 16 there was no difference in Bone Mineral Density (BMD), Bone Mineral Content (BMC) or volumetric Bone Mineral Density (vBMD) in the adjuvant group. Neoadjuvant chemotherapy appears to have a significant detrimental effect on BMD, vBMD and BMC. Despite this there were no significant alterations in the mechanical properties of the regenerate. Histologically there was a trend for increased cortical thickness in the control groups compared to intervention however this did not prove statistically significant. In conclusion, adjuvant chemotherapy may be more beneficial for cases where distraction osteogenesis is being considered to replace segmental bone loss after tumour excision


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 84 - 84
1 Jul 2020
Chow D Qin L Wang J Yang K Wan P
Full Access

Patellar fractures account for approximately 1% of all fractures. Open reduction and internal fixation is recommended to restore extensor continuity and articular congruity. However, complications such as nonunion and symptomatic hardware, still exist. Furthermore, there is a risk of re-fracturing of the healed bone during the removal of the implants. Magnesium (Mg), a biodegradable metal, has elastic moduli and compressive yield strength that are comparable to those of natural bone. Our previous study showed that released Mg ions enhanced fracture healing. However, Mg-based implants degrade rapidly after implantation and lead to insufficient mechanical strength to support the fracture. Microarc oxidation (MAO) is a metal surface coating that reduces corrosion. We hypothesized that Mg pins, with or without MAO, would enhance fracture healing radiologically, mechanically, and histologically, while MAO would decrease degradation of Mg pins.

Patellar fracture was performed on forty-eight 18-week-old female New Zealand White rabbits according to established protocol. Briefly, the patella is osteotomized transversely and a tunnel (1.1mm) was drilled longitudinally through the two bone fragments. A pin (1 mm, stainless steel, Mg, or MAO-Mg) was inserted into the tunnel. The reduced construct was stabilized with a figure-of-eight band wire (⊘ 0.6 mm stainless steel wire). Cast immobilization was applied for 6 weeks. The rabbits were euthanized at week 8 and 12 post-operation. Microarchitecture and mechanical properties of the repaired patella were analyzed with microCT and tensile testing respectively. Histological sections of the repaired patella were stained. To evaluate the effect of the MAO treatment on degradation rate of Mg pin, the volume of the Mg pins in the patella was measured with microCT.

At week 8, both Mg and Mg-MAO showed higher ratio of bone volume to tissue volume (BV/TV) than the control while there was no significant different between Mg and Mg-MAO. At week 12, Control, Mg, and Mg-MAO groups showed enlarged patella when compared to the normal patella. Tissue volume (TV) and bone volume (BV) of the patella in Mg and Mg-MAO were larger than those in the Control group. However, the Control had higher ratio of bone volume to tissue volume (BV/TV), TV density, and BV density than Mg and Mg-MAO. Tensile testing showed that the mechanical properties of the repaired patella (failure load, stiffness, ultimate strength, and energy-to-failure) of Mg and Mg-MAO were higher than that of the control at both week 8 and week 12. Histological analysis showed that there was significant new bone formation in the Mg and Mg-MAO group compared with the Control group at week 8 and 12. The degradation rate of the MAO-coated Mg pins was significantly slower than those without MAO at week 8 but no significant difference was detected at week 12.

Mechanical, microarchitectural, and histological assessments showed that Mg pins, with or without MAO, enhanced fracture healing of the repaired patella compared to the Control. MAO treatment enhanced the corrosion resistance of the Mg pins at the early time point.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 64 - 64
1 Jul 2020
Lin K Wong F Wang M Teo KY Chuah SJ Ren X Wu Y Hassan A Lai RC Lim S Hui JHP Toh W Lee E Zhang S
Full Access

Osteochondral (OC) defects of the knee are associated with pain and significant limitation of activity. Studies have demonstrated the therapeutic efficacy of mesenchymal stem cell (MSC) therapies in treating osteochondral defects. There is increasing evidence that the efficacy of MSC therapies may be a result of the paracrine secretion, particularly exosomes. Here, we examine the effects of MSC exosomes in combination with Hyaluronic Acid (HA) as an injectable therapy on functional osteochondral regeneration in a rabbit osteochondral defect model.

Exosomes were purified from human MSC conditioned medium by size fractionation. A circular osteochondral defect of 4.5 mm diameter and 2.5 mm depth was surgically created in the trochlear grooves of 16 rabbit knees. Thereafter, eight knees received three weekly injections of 200 µg of exosomes in one ml of 3% HA, and the remaining eight knees received three weekly injections of one ml of 3% HA only. The rabbits were sacrificed at six weeks. Analyses were performed by macroscopic and histological assessments, and functional competence was analysed via Young Modulus calculation at five different points (central, superior, inferior, medial and lateral) of the repaired osteochondral defect site.

MSC exosomes displayed a modal size of 100 nm and expressed exosome markers (CD81, TSG101 and ALIX). When compared to HA alone, MSC exosomes in combination with HA showed significantly better repair histologically and biomechanically. The Young Modulus was higher in 4 out of the 5 points. In the central region, the Young Modulus of MSC exosome and HA combination therapy was significantly higher: 5.42 MPa [SD=1.19, 95% CI: 3.93–6.90] when compared to HA alone: 2.87 MPa [SD=2.10, 95% CI: 0.26–5.49], p < 0 .05. The overall mean peripheral region was also significantly higher in the MSC exosome and HA combination therapy group: 5.87 MPa [SD=1.19, 95% CI: 4.40–7.35] when compared to HA alone: 2.70 MPa [SD=1.62, 95% CI: 0.79–4.71], p < 0 .05. The inferior region showed a significantly higher Young Modulus in the combination therapy: 7.34 MPa [SD=2.14, 95% CI: 4.68–10] compared to HA alone: 2.92 MPa [SD=0.98, 95% CI: 0.21–5.63], p < 0.05. The superior region showed a significantly higher Young Modulus in the combination therapy: 7.31 MPa [SD=3.29, 95% CI: 3.22–11.39] compared to HA alone: 3.59 MPa [SD=2.55, 95% CI: 0.42–6.76], p < 0.05. The lateral region showed a significantly higher Young Modulus in the combination therapy: 8.05 MPa [SD=2.06, 95% CI: 5.49–10.61] compared to HA alone: 3.56 MPa [SD=2.01, 95% CI: 1.06–6.06], p < 0.05. The medial region showed a higher Young Modulus in the combination therapy: 6.68 MPa [SD=1.48, 95% CI: 4.85–8.51] compared to HA alone: 3.45 MPa [SD=3.01, 95% CI: −0.29–7.19], but was not statistically significant. No adverse tissue reaction was observed in all the immunocompetent animals treated with MSC exosomes.

Three weekly injections of MSC exosomes in combination with HA therapy results in a more functional osteochondral regeneration as compared to HA alone.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 124 - 124
1 May 2012
Ganeshalingam R Oliver R Musgrove T Yu Y
Full Access

The biological properties of morselised bone allograft treated with either a supercritical fluid process or low-dose (15 kGy) gamma irradiation were compared using radiological, histological and immunohistological techniques. The aims were to investigate any differences in the biological properties of supercritical fluid treated allograft and low-dose gamma irradiated allograft in-vivo.

Rabbit allograft were cleaned of all soft tissue, cartilage and processed into ‘corticancellous crunch’ using a Noviomagus Bone Mill. Pooled samples were either gamma irradiated (15 kGy) or treated by NovaSterilis using super critical carbon dioxide. A well-reported tibial defect model in ten rabbits was used to examine the in vivo response of the different treatments at two and four weeks following surgery (n=5 per time point). Radiographic (x-ray, CT and micro CT), histology and immunohistochemistry was used to assess the in vivo response.

Radiographic results revealed an initial response to the gamma-irradiated samples compared to SCF. Histology confirmed this reaction to be inflammatory in nature at two weeks that continued at four weeks for the gamma irradiated samples. In contrast, the SCF treated sample demonstrated new bone formation while the inflammatory reaction was muted compared to the gamma irradiated samples. Four week x-rays and histology confirmed new bone formation in both groups while the lack of significant inflammatory response in the SCF group was noted.

Allograft sterilisation techniques do not result in the same initial response when evaluated in vivo. Removal of lipids and cellular debris following SCF treatment may influence the in vivo response. While both techniques can provide a sterile product, the in vivo response requires further investigation.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_22 | Pages 102 - 102
1 Dec 2017
Pützler J Zeiter S Vallejo A Gehweiler D Raschke M Richards G Moriarty F
Full Access

Aim

Treatment regimens for fracture-related infection (FRI) often refer to the classification of Willenegger and Roth, which stratifies FRIs based on time of onset of symptoms. The classification includes early (<2 weeks), delayed (2–10 weeks) and late (>10 weeks) infections. Early infections are generally treated with debridement and systemic antibiotics but may not require implant removal. Delayed and late infections, in contrast, are believed to have a mature biofilm on the implant, and therefore, treatment often involves implant removal. This distinction between early and delayed infections has never been established in a controlled clinical or preclinical study. This study tested the hypothesis that early and delayed FRIs respond differently to treatment comprising implant retention.

Method

A complete humeral osteotomy in 16 rabbits was fixed with a 7-hole-LCP and inoculated with Staphylococcus aureus. The inoculum size (2×106 colony forming units per inoculum) was previously tested without antibiotic intervention to result in infection of all animals persisting for at least 12 weeks.4 The infection was allowed to develop for either 1 (early group) or 4 (delayed group) weeks (n= 8 per group) after bacterial inoculation. At these time points, treatment involved debridement and irrigation of the wound (no implant removal) and quantitative bacteriological evaluation of the removed materials. Systemic antibiotics were administered according to a common clinical regimen (2 weeks: rifampin + nafcillin, followed by 4 weeks: rifampin + levofloxacin). After an additional one-week antibiotic washout period, animals were euthanized and a quantitative bacteriology of soft tissue, implant (after sonication) and bone was performed.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 164 - 164
1 May 2012
Pak P Oliver R Bell D Yu Y Bellemore J Walsh W
Full Access

Posterolateral spinal fusion using autograft in adult rabbits has been reported by many groups using the Boden model. Age in general has an adverse effect on skeletal healing; although, its role in posterolateral fusion is not well understood. This study examined the influence of animal age on spinal fusion using a standard model and experimental endpoints. We hypothesised that fusion quality and quantity would be less with increasing age.

A single level posterolateral fusion between the fifth and sixth lumbar segments were performed in six-month and two-year-old New Zealand white rabbits (n=6 per group) using morcelized iliac crest autograft. All animals were sacrificed at 12 weeks following surgery. Posteroanterior Faxitron radiographs and CT scans were taken and DICOM data was analysed (MIMICS Version 12, Materialise, Belgium). Axial, sagittal, coronal and three-dimensional models were created to visualise the fusion masses. Bone mineral density (BMD) of the fusion mass was measured using a Lunar DPXL Dexa machine. An MTS Bionix testing machine was then used to assess peak load and stiffness. Sagittal and coronal plane histology was evaluated in a blinded fashion using H&E, Tetrachrome and Pentachrome stains. Assessment included overall bony response on and between the transverse processes. Radiographs and CT confirmed a more robust healing response in younger animals. Radiographic union rates decreased from 83% to 50% in the aged animals. A neo- cortex surrounding the fusion mass was observed in the younger group but absent in the aged animals. Fusion mass BMD and that of the vertebral body was decreased in the older animals (P<0.05). Tensile mechanical data revealed a 30% reduction in peak load (P=0.024) and 34% reduction in stiffness (P=0.073) in the two-year-old animals compared with the six-month-old animals. Histological evaluation demonstrated a reduction in overall biological activity in the two-year-old animals. This reduction in activity was observed in the more challenging intertransverse space as well as adjacent to the transverse processes and vertebral bodies at the decortication sites. Numerous sites of new bone formation was present in the middle of the fusion mass in the six-month-old animals while the bone graft in the two-year- old animals were less viable.

Skeletal healing is complex and mediated by both local and systemic factors. This study demonstrated that ageing leads to an impaired and delayed skeletal repair.

Where autograft is utilised, diminished graft osteoinductivity and reduced levels of growth factors and nutritional supply in the surrounding milieu explains our observations. The aged rabbit posterolateral spinal fusion model has not been previously described but would be a useful to evaluate new treatment modalities in a more challenging host environment.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 165 - 165
1 May 2012
Alcorace G Oliver R Yu Y Stanford R
Full Access

Single level posterolateral spinal fusion in rabbits is the accepted preclinical model for evaluating bone graft substitutes or treatments to enhance/augment healing. This study aimed to improve preclinical testing by developing a multi-level unilateral fusion model that could be used as a screening tool prior to larger scale preclinical experiments.

A four level unilateral posterolateral fusion was performed in nine animals. The materials were randomly allocated and placed between the decorticated surfaces of the transverse processes and vertebral bodies. Animals were euthanised at three, six and 12 weeks. The materials were (1) 25 kGy y-irradiated rabbit allograft chips (RAC), (2) SCF RAC, (3) 60% tri-calcium phosphate, 40% hydroxyapatite formagraft (BiOstetic) (4) Autograft (1.5 cc morsellised to 1-2.5 mm granules). The autograft was harvested from the iliac crest using the L5-L6 incision. Endpoints included x-ray, CT, micro CT and histology.

The animals tolerated the surgery well. Radiographic data provided a useful method to differentiate between groups. Micro CT however was extremely valuable demonstrating new bone formation as early as three weeks across the groups. Gamma irradiated samples demonstrated an initial inflammatory reaction while the autograft, SCF allograft and synthetic TCP did not show this response. As expected, time was an important factor demonstrating the maturity in the fusions. These materials responded in a similar fashion in this model as observed in a single level fusion.

A unilateral multi-level fusion can be performed in rabbits to provide a useful screening for different materials. Gamma irradiated allograft has an initial inflammatory reaction that may be related to the presence of residual cellular material whereas SCF and synthetic materials do not.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 110 - 110
1 May 2016
Wada H Mishima H Yoshizawa T Sugaya H Nishino T Yamazaki M
Full Access

Introduction

Hydroxyapatite and poly-L-lactide (HA/PLLA) composites are osteoconductive and biodegradable. They have already been used clinically to treat fractured bones by inducing osteosynthesis and serving as the bone filling material. During revision of total hip arthroplasty, we have grafted bone onto the bone defect and covered it with an HA/PLLA mesh instead of using a metal mesh on the non-load bearing portion of the cup (Figure 1). However, whether the interface between the HA/PLLA and the titanium alloy cup was stable remains unclear.

Objectives

The purpose of this study was to determine and compare the histological osteoconductivity and osteoinductivity of HA/PLLA and titanium alloy.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_22 | Pages 63 - 63
1 Dec 2017
Pützler J Arens D Metsemakers W Zeiter S Richard K Richards G Raschke M Moriarty F
Full Access

Aim

Open fractures still have a high risk for fracture-related Infection (FRI). The optimal duration of perioperative antibiotic prophylaxis (PAP) for open fractures remains controversial due to heterogeneous guidelines and highly variable prophylactic regimens in clinical practice. In order to provide further evidence with which to support the selection of antibiotic duration for open fracture care, we performed a preclinical evaluation in a contaminated rabbit fracture model.

Method

A complete humeral osteotomy in 18 rabbits was fixed with a 7-hole-LCP and inoculated with Staphylococcus aureus (2×106 colony forming units, CFU per inoculum). This inoculum was previously shown to result in a 100% infection rate in the absence of any antibiotic prophylaxis. Cefuroxime was administered intravenously in a weight adjusted dosage equivalent to human medicine (18.75 mg/kg) as a single shot only, for 24 hours (every 8 hours) and for 72 hours (every 8 hours) in separate groups of rabbits (n=6 per group). Infection rate per group was assessed after two weeks by quantitative bacteriological evaluation of soft tissue, bone and implants. Blood samples were taken from rabbits preoperatively and on days 3, 7 and 14 after surgery to measure white blood cell count (WBC) and C-reactive protein (CRP) levels.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 26 - 26
1 Mar 2017
Muratoglu O Suhardi V Bichara D Kwok S Freiberg A Rubash H Yun S Oral E
Full Access

Introduction. About 2% of primary total joint replacement arthroplasty (TJA) procedures become infected. Periprosthetic joint infection (PJI) is currently one of the main reasons requiring costly TJA revisions, posing a burden on patients, physicians and insurance companies. 1. Currently used drug-eluting polymers such as bone cements offer limited drug release profiles, sometimes unable to completely clear out bacterial microorganisms within the joint space. For this study we determined the safety and efficacy of an antibiotic-eluting UHMWPE articular surface that delivered local antibiotics at optimal concentrations to treat PJI in a rabbit model. Materials and Methods. Skeletally mature adult male New Zealand White rabbits received either two non-antibiotic eluting UHMWPE (CONTROL, n=5) or vancomycin-eluting UHMWPE (TEST, n=5) (3 mm in diameter and 6 mm length) in the patellofemoral groove (Fig. 1). All rabbits received a beaded titanium rod in the tibial canal (4 mm diameter and 12 mm length). Both groups received two doses of 5 × 10. 7. cfu of bioluminescent S. aureus (Xen 29, PerkinElmer 119240) in 50 µL 0.9 % saline in the following sites: (1) distal tibial canal prior to insertion of the rod; (2) articular space after closure of the joint capsule (Fig. 1). None of the animals received any intravenous antibiotics for this study. Bioluminescence signal (photons/second) was measured when the rabbits expired, or at the study endpoint (day 21). The metal rods were stained with BacLight. ®. Bacterial Live-Dead Stain and imaged using two-photon microscopy to detect live bacteria. Hardware, polyethylene implants and joint tissues were sonicated to further quantify live bacteria via plate seeding. Results. All control rabbits expired within 7 days (Fig. 2a). One rabbit in the test group expired at day 7 and another at day 15. All control rabbits had positive bioluminescence (live bacteria), while none of the test rabbits did (Fig 2b). Kidney (creatinine and BUN) and liver functions (ALT and ALP) remained normal for all rabbits. All control rabbits showed positive bacterial culture after sonication, while all test rabbits were negative. Two-photon imaging showed 75±10 % viability for bacteria adhered to the metal rods in the control and no viability in the test group. Discussion. This rabbit model showed that vancomycin eluted from UHMWPE is sufficient to eradicate S. aureus in joint space and in between the bone-implant interface of tibial canal. One limitation of this study is the lack of intravenous antibiotic treatment, which is standard clinical practice. In addition, joint infections are often associated with already formed biofilms, which were not tested in this study. However, safety data (normal kidney and liver functions) and complete eradication of S. aureus is an encouraging finding. Conclusion. Vancomycin-eluting UHMWPE effectively eliminated bacteria in a rabbit model of acute peri-prosthetic joint infection. This material is promising as a replacement liner to treat joint infections in revision surgery. For any figures or tables, please contact authors directly (see Info & Metrics tab above).


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 33 - 33
1 Jul 2020
Wu Y Denslin V Ren X Lee CS Yap FL Yang Z Lee E Tee C
Full Access

Adult articular cartilage mechanical functionality is dependent on the unique zonal organization of its tissue. Current mesenchymal stem cell (MSC)-based treatment has resulted in sub-optimal cartilage repair, with inferior quality of cartilage generated from MSCs in terms of the biochemical content, zonal architecture and mechanical strength when compared to normal cartilage. The phenotype of cartilage derived from MSCs has been reported to be influenced by the microenvironmental biophysical cues, such as the surface topography and substrate stiffness. In this study, the effect of nano-topographic surfaces to direct MSC chondrogenic differentiation to chondrocytes of different phenotypes was investigated, and the application of these pre-differentiated cells for cartilage repair was explored. Specific nano-topographic patterns on the polymeric substrate were generated by nano-thermal imprinting on the PCL, PGA and PLA surfaces respectively. Human bone marrow MSCs seeded on these surfaces were subjected to chondrogenic differentiation and the phenotypic outcome of the differentiated cells was analyzed by real time PCR, matrix quantification and immunohistological staining. The influence of substrate stiffness of the nano-topographic patterns on MSC chondrogenesis was further evaluated. The ability of these pre-differentiated MSCs on different nano-topographic surfaces to form zonal cartilage was verified in in vitro 3D hydrogel culture. These pre-differentiated cells were then implanted as bilayered hydrogel constructs composed of superficial zone-like chondro-progenitors overlaying the middle/deep zone-like chondro-progenitors, was compared to undifferentiated MSCs and non-specifically pre-differentiated MSCs in a osteochondral defect rabbit model. Nano-topographical patterns triggered MSC morphology and cytoskeletal structure changes, and cellular aggregation resulting in specific chondrogenic differentiation outcomes. MSC chondrogenesis on nano-pillar topography facilitated robust hyaline-like cartilage formation, while MSCs on nano-grill topography were induced to form fibro/superficial zone cartilage-like tissue. These phenotypic outcomes were further diversified and controlled by manipulation of the material stiffness. Hyaline cartilage with middle/deep zone cartilage characteristics was derived on softer nano-pillar surfaces, and superficial zone-like cartilage resulted on softer nano-grill surfaces. MSCs on stiffer nano-pillar and stiffer nano-grill resulted in mixed fibro/hyaline/hypertrophic cartilage and non-cartilage tissue, respectively. Further, the nano-topography pre-differentiated cells possessed phenotypic memory, forming phenotypically distinct cartilage in subsequent 3D hydrogel culture. Lastly, implantation of the bilayered hydrogel construct of superficial zone-like chondro-progenitors and middle/deep zone-like chondro-progenitors resulted in regeneration of phenotypically better cartilage tissue with higher mechanical function. Our results demonstrate the potential of nano-topographic cues, coupled with substrate stiffness, in guiding the differentiation of MSCs to chondrocytes of a specific phenotype. Implantation of these chondrocytes in a bilayered hydrogel construct yielded cartilage with more normal architecture and mechanical function. Our approach provides a potential translatable strategy for improved articular cartilage regeneration using MSCs


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_16 | Pages 105 - 105
1 Dec 2015
Metsemakers W Emanuel N Cohen O Reichart M Schmid T Segal D Richards R Zaat S Moriarty T
Full Access

One of the most challenging complications in orthopedic trauma surgery is the development of infection. Improved infection prophylaxis could be achieved by providing local delivery of antibiotics directly to the tissue-implant interface. Especially implant-associated bone infections caused by antibiotic-resistant pathogens pose significant clinical challenges to treating physicians. Prophylactic strategies that act against resistant organisms, such as methicillin-resistant Staphylococcus aureus (MRSA), are urgently required. The objective of this experimental study was to determine the efficacy of a biodegradable Polymer-Lipid Encapsulation MatriX (PLEX) loaded with the antibiotic doxycycline as a local prophylactic strategy against implant-associated osteomyelitis in a humeral non-fracture rabbit model. Activity of the PLEX-doxycycline-coating was tested against both a doxycycline susceptible (doxyS) methicillin-susceptible S. aureus (MSSA) as well as a doxycycline-resistant (doxyR) MRSA. In a rabbit intramedullary (IM) nail-related infection model, twelve rabbits received an inoculum of a doxyS MSSA direct into the medullary cavity of the humerus. After inoculation, animals received either a PLEX-doxycycline-coated nail, or an uncoated nail. The animals were observed for four weeks. Upon euthanasia, quantitative bacteriology was performed to determine bacterial load in tissues and biofilm formation on the implant. A second study was performed with sixteen rabbits receiving a DoxyR MRSA inoculum, again in coated and uncoated groups. In vitro elution studies revealed that 25% of the doxycycline was released from the PLEX-coated implants within the first day, followed by a 3% release per day up to day 28. Quantitative bacteriology revealed the presence of osteomyelitis in all animals receiving an uncoated nail in both the MSSA and the DoxyR MRSA studies (figure). All rabbits receiving a PLEX-doxycycline-coated nail were culture negative in the doxyS MSSA-group and the surrounding bone displayed a normal physiological appearance in both histological sections and radiographs. In the doxyR MRSA inoculated rabbits, a statistically significant reduction in the number of culture-positive samples was observed for the PLEX-doxycycline-coated group when compared to the animals that had received an uncoated nail, although the reduction in bacterial burden did not reach statistical significance. Improved prophylaxis against infection in trauma and orthopedic implant surgery is clearly required today. In this study, we investigated a PLEX-doxycycline-coated IM nail in a humeral non-fracture rabbit model. The PLEX-doxycycline coating on titanium alloy implants provided complete protection against implant-associated MSSA osteomyelitis, and resulted in a significant reduction in the number of culture positive samples when challenged with a doxycycline-resistant MRSA


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 105 - 105
1 Feb 2020
Friedrich C Wang S Francis A Baker E
Full Access

Prior work in the setting of MRSA (clinical isolate), showed that enhancement of Ti6Al4V with anodized nanotubes apparently disrupts the formation and adhesion of MRSA biofilm. The greater amount of cultured MRSA using effluent released from in vitro nanotube surfaces by sonication, compared with thermal plasma sprayed (TPS), indicated probable disruption of biofilm formation and adhesion. The use of nanosilver nanotubes in vivo in a rabbit model showed that after 1 week of infection followed by 1 week of vancomycin treatment, the nanotube MRSA level was 30% that of TPS, and the nanosilver nanotube MRSA level was only 5% of TPS. The implementation of the technology will enhance the remodeled bone locking ability of rough TPS, with surface nanotubes that provide antibacterial properties and increased bone adhesion. Lap shear tests of the nanotubes were performed according to ASTM F1044. In multiple tests, circular adhesive films bonded Ti6Al4V bars containing nanotubes with plain Ti6Al4V. The assemblies were suitably arranged in a tensile tester and pulled to shear failure. There were three modes of failure; shear failure within the adhesive, failure of the adhesive from the plain titanium, and shear failure of the nanotubes from the bar. Tests determined the shear strength of the adhesive and its bonding strength to bare titanium. ImageJ software determined the area of each of the three failure modes. From this analysis, the shear strength of the nanotubes of each sample was calculated. The analyses showed the shear strength of the nanotubes to be as high as 65MPa (9,500psi) with a more typical shear strength of 55MPa (8,000 psi), and several surfaces with 45MPa (6,000 psi). The literature presents models predicting the shear stress in bonded hip stems. Assuming the TPS with nanotubes performs similar to a bonded hip stem, owing to the locking of the bone with the TPS, a typical shear stress prediction for physiological loads is approximately 10 MPa. The nanotube shear strengths were 4–6 times higher than the expected stress during use. For any figures or tables, please contact authors directly


Full Access

An established rabbit model was used to preliminarily investigate the effect of acellular triphase, namely bone-cartilage-tendon, scaffold (ATS) sandwiched with autologous bone mesenchymal stem cells (BMSCs) sheets on tendon-bone interface healing. Bone, fibrocartilage and tendon tissue were harvested from the rabbits and sectioned into a book-type scaffold. The scaffolds were decellularized and their characterization was presented. BMSCs were isolated and co-cultured with the scaffolds to verify their cytocompatibility. BMSCs sheets were fabricated and inserted into the book page of the scaffold to construct an autologous BMSCs-sheets/book-type ATS complex. The complex was implated in the right knee of rabbits which operated standard partial patellectomy for TBI regeneration using Imaging, histological and biomechanical examinations. The bone, fibrocartilage and tendon tissue were sectioned into a book-type scaffold before decellularization. Then we decellularized the above tissue and mostly preserved their microstructure and composition of the natural extracellular matrix, including collagen and proteoglycan. After the physicochemical and biological properties of the book-type ATS were evaluated, autologous BMSCs sheets were inserted into the book page of the scaffold to construct an autologous BMSCs-sheets/book-type ATS implants for TBI regeneration. In addition, the ATS has the advantages of non-toxicity, suitable for cell adhesion and growth as well as low immunogenicity while co-cultured with the BMSCs. At the same time, different scaffolds has the ability to induce the osteogenic, chondrogenic and tenogenic differentiation of BMSCs by immunofluorescence, reverse transcription-polymerase chain reaction and western blot analysis. To determine the efficacy of the tissue-engineered implants for TBI regeneration, we transplanted it into a rabbit patella-patellar tendon (PPT) injury model, and the rabbits were sacrificed at postoperative week 8 or 16 for the radiological, histological, and mechanical evaluation. Radiologically, Synchrotron radiation micro-computed tomography (SR-μCT) showed that BMSCs/ATS group significantly increased bone area, BV/TV, trabecular thickness and trabecular number at the healing interface as compared with other groups at postoperative week 8 or 16. Histologically, the BMSCs/ATS group showed more woven bone, and a more robust fibrocartilaginous junction with a characteristic matrix rich in proteoglycans was seen at the PPT healing interface in comparison with other groups after 8 weeks. At week 16, the healing interface in 3 groups displayed better remodeling with respect to postoperative week 8. Healing and remodeling at the PPT junction were almost complete, with a resemblance to a healthy BTI consisting of the characteristic 4 zones in all groups. At last, we used biomechanical test as functional parameters to evaluate the quality of tendon-bone healing. Biomechanical testing indicated that BMSCs/ATS group showed significantly higher failure load and stiffness than other groups at postoperative week 8 and 16. The complex composed of acellular triphase, namely bone-cartilage-tendon, scaffold (ATS) sandwiched with autologous bone mesenchymal stem cells (BMSCs) sheets can simulate the gradient structure of tendon-bone interface, inducing stem cell directional differentiation, so as to promote patella-patellar tendon interface healing effectively after injury


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 18 - 18
1 Jul 2020
Pattappa G Koch M Weber J Lang S Bohrer A Johnstone B Docheva D Zellner J Angele P Krueckel J Franke D
Full Access

Osteoarthritis (OA) is one of the most prevalent joint diseases involving progressive and degenerative changes to cartilage resulting from a variety of etiologies including post-traumatic incident or aging. OA lesions can be treated at its early stages through cell-based tissue engineering therapies using Mesenchymal Stem Cells (MSCs). In vivo models for evaluating these strategies, have described both chondral (impaction) and osteochondral (biopsy punch) defects. The aim of the investigation was to develop a compact and reproducible defect inducing post-traumatic degenerative changes mimicking early OA. Additionally, a pilot study to evaluate the efficacy of MSC-hydrogel treatment was also assessed. Surgery was performed on New Zealand white rabbits (male, 5–8 months old) with defects created on medial femoral condyle. For developing an appropriate defect, three approaches were used for evaluation: a biopsy punch (n = three at six and twelve weeks), an impaction device1 (n = three at six and twelve weeks) and a dental drill model (n = six at six and twelve weeks). At stated time points, condyles were harvested and decalcified in 10% EDTA, then embedded in Tissue-Tek and sectioned using a cryostat. Upon identification of region of interest, sections were stained with Safranin-O/Fast green and scored using OARSI scoring system by two blinded observers2. For the pilot study, autologous bone marrow was harvested from rabbits and used to isolate and expand MSCs. The Dental drill model was applied to both knee condyles, left untreated for six weeks at which stage, PKH26 fluorescently labelled MSCs were seeded into a hyaluronic acid hydrogel (TETEC). Repair tissue was removed from both condyles and MSC-hydrogel was injected into the left knee, whilst right knee was left empty. Rabbits were sacrificed at one (n = 1), six (n = 3) and twelve (n = 3) weeks post-treatment, processed as previously described and cartilage regeneration evaluated using Sellers score3. Impacted condyles exhibited no observed changes histologically (Mean OARSI score = 1 + 1), whereas biopsy punched and dental drilled defects demonstrated equal signs of cartilage erosion (OARSI score = 3 + 1) at assessed time points. However, biopsy punched condyles formed a diffusive defect, whereas dental drilled condyles showed a more defined, compact and reproducible defect. In the pilot study, PKH-labelled MSCs were observed at one and six weeks post-implantation within the defect space where hydrogel was injected. Tissue regeneration assessment indicated no difference between empty (Mean Sellers score = 14 + 2) and MSC treated defects (Sellers score = 16 + 5) at six weeks post-injection. At twelve weeks, MSC treated defects showed improved tissue regeneration with substantial subchondral bone restoration and good integration of regenerative cartilage with surrounding intact tissue (Sellers score = 10 + 1), whereas untreated defects showed no change in regeneration compared to six weeks (Sellers score = 16 + 2). Dental drill model was found to be the appropriate strategy for investigating early OA progression and treatment. Application of MSCs in defects showed good cartilage regeneration after twelve weeks application, indicating their promise in the treatment of early OA defects


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 15 - 15
1 Sep 2012
Hildebrand KA Zhang M Salo P Hart D
Full Access

Purpose. Recent work has shown that joint contracture severity can be decreased with the mast cell stabilizer ketotifen in association with decreased numbers of myofibroblasts and mast cells in the joint capsule of a rabbit model of post-traumatic contractures. Neuropeptides such as Substance P (SP) can induce mast cells to release growth factors. Using a gel contraction assay, we test the hypothesis that joint capsule cell-mediated contraction of a collagen gel can be enhanced with SP, but the effect is magnified in the presence of mast cells. Method. Anterior elbow joint capsules were obtained at the time of surgical release from 2 men (age 34 and 54) and 1 woman (age 40) with chronic (> 1 year) post-traumatic joint contractures. The human mast cell line HMC-1 (Mayo Clinic, Rochester), SP and the NK1 receptor antagonist RP67580 (Sigma, Oakville, ON) were used. NK1 is the SP receptor. Neutralized Collagen solution composed with 58% Vitrogen 100 purified collagen mixed with HMC-1 cells only (7.5 105), human capsule cells (2.5 105), or human capsule cells (2.5 105) and 7.5 105 mast cells (1:3) were cast into 24- well tissue culture plates. In some experiments, SP (1 × 10. −5. M) +/− RP67580 (0.5 mM) were added. The gels were maintained with 0.5 ml DMEM composed with 2% BSA and incubated at 37C for 12 h for gelation to occur. The gels were then detached from the wall and the bottom of culture plate wells, and photographed at regular intervals up to 72 hours. Gel contraction studies were carried out on passage 4 and done in triplicate for each patient. The average value of each patients triplicate was combined to give a mean contraction at each time point. Statistical analysis involved an ANOVA with posthoc Bonferroni correction. P < 0.001 was significant. Results. Mast cells alone or with SP were unable to contract collagen gels. Joint capsule cells were able to contract the collagen gels and this was enhanced in the presence of SP, although not statistically significant. Joint capsule cells combined with mast cells enhanced the gel contraction more than joint capsule cells alone or with SP (p<0.001). The addition of SP accelerated the joint capsule cell-mediated gel contraction in the presence of mast cells the greatest (p<0.001 over all other conditions). The inhibitor RP67580 completely abolished the collagen gel contraction of the joint capsule cells in all conditions. Conclusion. The in vitro experiment shows that joint capsule cell function, in the form of collagen gel contraction, is modified by the presence of mast cells and neuropeptides. These findings are significant as they strengthen the hypothesis that a myofibroblast mast cell neuropeptide fibrosis axis may be contributing to the joint capsule changes underling the loss of motion in post-traumatic joint contractures. In vivo studies with the rabbit model of post-traumatic contractures will be performed using the compounds examined in the current study