Advertisement for orthosearch.org.uk
Results 1 - 20 of 253
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 145 - 145
1 Sep 2012
Green C O'Rourke D Courtis P Fitzpatrick D Kelly P
Full Access

The management of the dysplastic hip represents a clinical and a technical challenge to the paediatric orthopaedic surgeon. There is a great deal of variation in the degree and direction of acetabular dysplasia. Preoperative planning in the dysplastic hip is still largely based on plain radiographs. However, these plain films are a 2D projection of a 3D structure and measurement is prone to inaccuracy as a result. Hip arthrography is used in an attempt to analyse the 3D morphology of the hip. However, this still employs a 2D projection of a 3D structure and in addition has the risk of general anaesthesia and infection. Geometrical analysis based on multiplanar imaging with CT scans has been shown to reduce analysis variability. We present a system for morphological analysis and preoperative of the paediatric hip using this model. Our system can be used to determine the most appropriate osteotomy based on morphology. This system should increase the accuracy of preoperative planning and reduce the need for arthrography


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 11 - 11
1 Mar 2017
Mohar J Knez D Cirman R Trebse R Mihalic R Vrtovec T
Full Access

Summary. Optimum position of pedicle screws can be determined preoperatively by CT based planning. We conducted a comparative study in order to analyse manually determined pedicle screw plans and those that were obtained automatically by a computer software and found an agreement in plans between both methods, yet an increase in fastening strengths was observed for automatically obtained plans. Hypothesys. Automatic planning of pedicle screw positions and sizing is not inferior to manual planning. Design. Prospective comparative study. Introduction. Preoperative planning in spinal deformity surgery starts by a proper selection of implant anchors throughout the instrumented spine, where pedicle screws provide the optimum choice for bone fixation. In the case of severe spinal deformities, dysplastic pedicles can limit screw usage, and therefore studying the anatomy of vertebrae from preoperative images can aid in achieving the safest screw position through optimal fastening strength. The purpose of this study is to compare manually and automatically obtained preoperative pedicle screw plans. Materials and Methods. CT scans of 17 deformed thoracic spines were studied by two experienced spine deformity surgeons, who placed 316 pedicle screws in 3D using a software positioning tool by aiming for the safest trajectory that permitted the largest possible screw sizes. The resulting manually obtained screw sizes, trajectory angles, entry points and normalised fastening strengths were compared to those obtained automatically by a dedicated computer software that, basing on vertebral anatomy and bone density in 3D, determined optimal screw sizes and trajectories. Results. Statistically significant differences were observed between manually and automatically obtained plans for screw sizes (p < 0.05) and trajectory angles (p < 0.001). However, for automatically obtained plans, screws were not smaller in diameter (p < 0.05) or shorter in length (p < 0.001), while screw normalised fastening strengths were higher (p < 0.001). Conclusions. In comparison to manual planning, automatically obtained plans did not result in smaller screw diameters or shorter screw lengths, which is in agreement with the definition of the pull-out strength, but in different screw trajectory angles, which is reflected by higher normalised fastening strengths. Captions. Fig. 1. Visual comparison among automatically obtained (green colour) and manually defined pedicle screw placement plans by two experienced spine surgeons (red and blue colour) for three different patients with adolescent idiopathic scoliosis, shown from top to bottom in a three-dimensional view, left sagittal, right sagittal and coronal view. Fig. 2. Histograms of differences between observers and (left column), between observer and automated method (middle column), and between observer and automated method (right column), shown from top to bottom for differences in pedicle screw pedicle screw diameter, sagittal inclination, and normalised fastening strength. For figures/tables, please contact authors directly.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 29 - 29
1 Feb 2020
Abe I Shirai C
Full Access

Background. Accurate acetabular cup positioning is considered to be essential to prevent postoperative dislocation and improve the long-term outcome of total hip arthroplasty (THA). Recently various devices such as navigation systems and patient-specific guides have been used to ensure the accuracy of acetabular cup positioning. Objectives. The present study evaluated the usefulness of CT-based three-dimensional THA preoperative planning for acetabular cup positioning. Methods. This study included 120 hips aged mean 68.3 years, who underwent primary THA using CT-based THA preoperative planning software ZedHip® (LEXI, Tokyo Japan) and postoperative CT imaging (Fig.1). The surgical approach adopted the modified Watson-Jones approach in the lateral decubitus position and Trident HA acetabular cups were used for all cases. Preoperatively the optimum cup size and position in the acetabular were decided using the ZedHip® software, taking into consideration femoral anteversion and to achieve the maximum range of motion in dynamic motion simulation. Radiographic inclination (RI) was selected in the range between 40°∼45° and radiographic anteversion (RA) in the range between 5°∼25°. Three-dimensional planning images of the cup positioning were obtained from the ZedHip® software, and the distances between the edge of the implant and anatomical landmarks such as the edge of the anterior or superior acetabular wall were measured on the three-dimensional images and recorded (Fig.2). Intraoperatively, the RI and RA were confirmed by reference to these distances and the acetabular cup was inserted. Relative positional information of the implant was extracted from postoperative CT imaging using the ZedHip® software and used to reproduce the position of the implant on preoperative CT imaging with the software image matching function. The difference between the preoperative planning and the actual implant position was measured to assess the accuracy of acetabular cup positioning using the ZedHip® software. Results. Actual cup size corresponded with that of preoperative planning in 95% of cases (114 hips). Postoperative mean RI was 42.3° ± 4.2° (95% confidence interval (CI), 41.5° ∼ 43.0°) and mean RA was 16.1° ± 5.9° (95%CI, 15.0° ∼ 17.1°). Deviation from the target RI was 4.2° ± 3.7° (95%CI, 3.5° ∼ 4.9°) and deviation from the target RA was 4.0° ± 3.6° (95%CI, 3.4° ∼ 4.7°). Overall 116 hips (96.7%) were within the RI safe zone (30° ∼ 50°) and 108 hips (90.0%) were within the RA safe zone (5° ∼ 25°), and 105 hips (87.5%) were within both the RI and RA safe zones (Fig.3). Mean cup shift from preoperative planning was 0.0mm ± 3.0mm to the cranial side in the cranio-caudal direction, 2.1mm ± 3.0mm to the anterior side in the antero-posterior direction, and 1.7mm ± 2.1mm to the lateral side in the medio-lateral direction. Conclusion. The accuracy of acetabular cup positioning using our method of CT-based three-dimensional THA preoperative planning was slightly inferior to reported values for CT-based navigation, but obviously superior to those without navigation and similar to those with portable navigation. CT-based three-dimensional THA preoperative planning is effective for acetabular cup positioning, and has better cost performance than expensive CT-based navigation. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 10 - 10
23 Feb 2023
Hardwick-Morris M Twiggs J Miles B Jones E Bruce WJM Walter WL
Full Access

Dislocation is one of the most common complications in total hip arthroplasty (THA) and is primarily driven by bony or prosthetic impingement. The aim of this study was two-fold. First, to develop a simulation that incorporates the functional position of the femur and pelvis and instantaneously determines range of motion (ROM) limits. Second, to assess the number of patients for whom their functional bony alignment escalates impingement risk. 468 patients underwent a preoperative THA planning protocol that included functional x-rays and a lower limb CT scan. The CT scan was segmented and landmarked, and the x-rays were measured for pelvic tilt, femoral rotation, and preoperative leg length discrepancy (LLD). All patients received 3D templating with the same implant combination (Depuy; Corail/Pinnacle). Implants were positioned according to standardised criteria. Each patient was simulated in a novel ROM simulation that instantaneously calculates bony and prosthetic impingement limits in functional movements. Simulated motions included flexion and standing-external rotation (ER). Each patient's ROM was simulated with their bones oriented in both functional and neutral positions. 13% patients suffered a ROM impingement for functional but not neutral extension-ER. As a result, 48% patients who failed the functional-ER simulation would not be detected without consideration of the functional bony alignment. 16% patients suffered a ROM impingement for functional but not neutral flexion. As a result, 65% patients who failed the flexion simulation would not be detected without consideration of the functional bony alignment. We have developed a ROM simulation for use with preoperative planning for THA surgery that can solve bony and prosthetic impingement limits instantaneously. The advantage of our ROM simulation over previous simulations is instantaneous impingement detection, not requiring implant geometries to be analysed prior to use, and addressing the functional position of both the femur and pelvis


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 23 - 23
1 Apr 2019
Greene A Hamilton M Polakovic S Mohajer N Youderian A Wright T Parsons I Saadi P Cheung E Jones R
Full Access

INTRODUCTION. Variability in placement of total shoulder arthroplasty (TSA) glenoid implants has led to the increased use of 3D CT preoperative planning software. Computer assisted surgery (CAS) offers the potential of improved accuracy in TSA while following a preoperative plan, as well as the flexibility for intraoperative adjustment during the procedure. This study compares the accuracy of implantation of reverse total shoulder arthroplasty (rTSA) glenoid implants using a CAS TSA system verses traditional non-navigated techniques in 30 cadaveric shoulders relative to a preoperative plan from 3D CT software. METHODS. High resolution 1mm slice thickness CT scans were obtained on 30 cadaveric shoulders from 15 matched pair specimens. Each scan was segmented and the digital models were incorporated into a preoperative planning software. Five fellowship trained orthopedic shoulder specialists used this software to virtually place a rTSA glenoid implant as they deemed best fit in six cadavers each. The specimens were randomized with respect to side and split into a cohort utilizing the CAS system and a cohort utilizing conventional instrumentation, for a total of three shoulders per cohort per surgeon. A BaSO. 4. PEEK surrogate implant identical in geometry to the metal implant used in the preoperative plan was used in every specimen, to maintain high CT resolution while minimizing CT artifact. The surgeons were instructed to implant the rTSA implants as close to their preoperative plans as possible for both cohorts. In the CAS cohort, each surgeon used the system to register the native cadaveric bones to each respective CT, perform the TSA procedure, and implant the surrogate rTSA implant. The surgeons then performed the TSA procedure on the opposing side of the matched pair using conventional instrumentation. Postoperatively, CT scans were repeated on each specimen and segmented to extract the digital models. The pre- and postoperative scapulae models were aligned using a best fit match algorithm, and variance between the virtual planned position of the implant and the executed surgical position of the implant was calculated [Fig 1]. RESULTS. For version and inclination, implants in the CAS cohort showed significantly less deviation from preoperative plan than those in the non-navigated cohort (Version: 1.9 ± 1.9° vs 5.9 ± 3.5°; p < .001; Inclination: 2.4 ± 2.5° vs 6.3 ± 6.2°; p = .031). No significant difference was noted between the two cohorts regarding deviation from the preoperative plan in anterior-posterior and superior-inferior positioning on the glenoid face (1.5 ± 1.0mm CAS cohort, 2.4 ± 1.3mm non- navigated cohort; p = .055). No significant difference was found for deviation from preoperative plan for reaming depth (1.1. ± 0.7mm CAS cohort, 1.3 ± 0.9mm non-navigated cohort; p =.397). CONCLUSION. The results of this study demonstrate that this CAS navigation system facilitates a surgeon's ability to more accurately reproduce their intended glenoid implant version and inclination (with respect to their preoperative plan), compared to conventional non-navigated techniques. Future work will determine if more accurate and precise implant placement is associated with improved clinical outcomes. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 136 - 136
1 Feb 2020
Greene A Parsons I Jones R Youderian A Byram I Papandrea R Cheung E Wright T Zuckerman J Flurin P
Full Access

INTRODUCTION. 3D preoperative planning software for anatomic and reverse total shoulder arthroplasty (ATSA and RTSA) provides additional insight for surgeons regarding implant selection and placement. Interestingly, the advent of such software has brought previously unconsidered questions to light on the optimal way to plan a case. In this study, a survey of shoulder specialists from the American Shoulder and Elbow Society (ASES) was conducted to examine thought patterns in current glenoid implant selection and placement. METHODS. 172 ASES members completed an 18-question survey on their thought process for how they select and place a glenoid implant for both ATSA and RTSA procedures. Data was collected using a custom online Survey Monkey survey. Surgeon answers were split into three cohorts based on their responses to usage of 3D preoperative planning software: high users, seldom users, and non-users. Data was analyzed for each cohort to examine differences in thought patterns, implant selection, and implant placement. RESULTS. 76 surgeons were grouped into the high user cohort, 66 into the seldom user cohort, and 30 into the non-user cohort. 61.9% of high users and 74.1% of seldom users performed >75 shoulder arthroplasties per year, whereas only 19.9% of non-users performed >75 arthroplasties per year (Figure 1). When questioned on glenoid implant type selection (augmented vs. non-augmented components), 80.3% of high users reported augment usage for both ATSA and RTSA, with using augments >45% of the time in 18.4% of ATSA cases and in 22.3% of RTSA cases. For seldom users, 80.3% reported augment usage in ATSA cases, and 70.3% in RTSA cases. Seldom users reported augment usage >45% of the time in 4.5% of ATSA cases and in 1.6% of RTSA cases. For non-preoperative planning users, 53.3% reported using augments in ATSA cases, and 48.3% for RTSA cases. Non-users used augmented glenoid components >45% of the time in 6.6% of ATSA cases and in 6.8% of RTSA cases. For resultant implant superior inclination in RTSA, 40.8% of high users aim for 0° of inclination, followed by 31.8% for seldom users and 16.7% of non-users (Figure 2). CONCLUSION. The results of this study show that 3D preoperative planning software has an influence on the decision making process when planning a shoulder arthroplasty. High volume shoulder arthroplasty surgeons report higher preoperative planning software usage than low volume surgeons, suggesting the utility of such software. Augmented glenoid component usage for both ATSA and RTSA is also higher for surgeons that use preoperative planning software, which either suggests the utility of augmented glenoid components, or that the use of such software creates the perceived need for augmented glenoid components. Lastly, surgeons who preoperatively plan tend to orient their glenoid components differently, which could suggest either a better understanding of the anatomy through the use of the software, or an influence on mindset regarding implant orientation resulting from software usage. This highlights an area for future work that could correlate clinical outcome data to implant selection and placement to prove what is the optimal plan for a given patient. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 53 - 53
1 Feb 2020
De Meo F Ascani D Cacciola G Bernardoni M Cavaliere P
Full Access

Preoperative planning is a crucial step for total hip arthroplasty (THA), and 2D X-ray images are commonly used. The planning aims to provide the correct implant size, restore functional biomechanical conditions and avoid early complication such as dislocation, leg length discrepancy or abductors insufficiency. Limitations of 2D planning, besides the low accuracy in sizing, concerns the inability of planning the anteversion of both acetabular and femoral component on axial plane. Also, the verification of the planning intraoperatively is wholly left to qualitative measurements and the surgeon's experience. The need for having a more accurate and functional preoperative planning has been addressed using 3D models. The MyHip Planner (MHP) (Medacta International, Castel San Pietro, Switzerland), is a preoperative planning software which through artificial intelligent algorithm converts the CT scans into a 3D model that perfectly match the patient's anatomy. Then, automatic positioning of the implants is performed following the personal settings of the surgeon which will check and validate the planning, a personalized simulation of six daily activities to detect impingement of implants and bones. The MyHip Verifier (MHV) intraoperatively verifies the execution of the planning in terms of leg length and offset using two fluoroscopic images. Also, the size and cup angles can be calculated. The purpose of the present study was to validate the accuracy of the MHP [Fig 1] and MHV [Fig 2]. The dataset consisted of 13 patients who underwent primary uncemented THA. Each patient had a preoperative CT scan, intraoperative fluoroscopy, and postoperative CT scan after the surgery. The CT protocol used was low radiation (0,2 mm slicing for the pelvis, 0,5 mm for knees and ankles). The patients have been preoperatively planned used the MPH, and the accuracy of the components size prediction has been evaluated by comparing the preoperative planned values with the surgical reports. The MVH calculated the leg length and offset in terms of the difference between the preoperative and postoperative position of the femur concerning the pelvis. The accuracy of the measurements has been evaluated using postoperative CT scans. The MPH was able to predict the implanted size in 83% of the patient for the femoral stem and 96% for the acetabular component. The accuracy of the MVH in measuring the leg length was under 2 mm (1,6 ± 0,7 mm) while the offset was 2,5±1,6 mm. The cup angles were 5±1,1deg and 2,3±1,3deg for the anteversion and inclination, respectively. The average cup anteversion was 28,3°, mean cup inclination was 42,6°; femoral offset and leg length was restored in 96,5% of patients within a range of ±3 mm concerning the preoperative position. The results demonstrated the reliability of the MPH in predicting the implant size, and the accuracy of the MVH to verify the execution of the plan intraoperatively. The two software can be used in the clinical routine to improve the clinical outcome in THA. Limitations of this study are represented mainly by the small cohort of patients involved. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 40 - 40
1 Feb 2020
Tarallo L Porcellini G Giorgini A Pellegrini A Catani F
Full Access

Introduction. Total shoulder replacement is a successful treatment for gleno-humeral osteoarthritis. However, components loosening and painful prostheses, related to components wrong positioning, are still a problem for those patients who underwent this kind of surgery. CT-based intraoperative navigation system is a suitable option to improve accuracy and precision of the implants as previously described in literature for others district. Method. Eleven reverse shoulder prostheses were performed at Modena Polyclinic from October 2018 to April 2019 using GPS CT-based intraoperative navigation system (Exactech, Gainsville, Florida). In the preoperative planning, Walch classification was used to assess glenoid type. The choice of inclination of the glenoid component, the screw length, as well as the inclination of the reamer was study and recorded using specific software using the CT scan of shoulder of each patient (Fig.1, Fig.2). Intraoperative and perioperative complications were recorded. Three patients were male, eight were female. Mean age was 72 years old (range 58=84). Three glenoid were type B2, six cases were B1, two case were type C1. Results. In all cases treated by reverse shoulder prostheses we had obtain good functional results at preliminary follow up. Eight degree posterior augment was used in seven case. Planned version was 0° in eight case, an anti-version of 3° was planned in the other three cases. Final reaming was as preoperatively planned in all cases except one. Mean surgical time was 71 minutes (range 51–82). One case of coracoid rupture has been reported. In all cases the system worked in proper manner without failures, no case of infection was reported. Discussion. It is well known as the more accurate placement of the glenoid led to enhanced long-term survivorship of the implant and decrease complication rates in RSTA. Our first experience with GPS navigation system has been satisfied. Good components’ positioning has been reached in all cases, without deviation from the preoperative planning. Pre-operative preparation using software has been always respected except in one case in which we decided to ream 1mm less to avoid excessive bone loss. In 3 case we decide to increase glenoid anti-version to allow a good cage containment in the scapula. No failure of the system has been recorded, with a little increase in the surgical time respect to traditional surgeries performed in our institute. The first case performed reported coracoid fracture, probably due to lack of experience in coracoid tracker positioning. It is very important to set the surgical theatre and the position of the patient in order to make the coracoid tracker visible for the computer. Screw positioning and length is decisively improved with GPS system compared with traditional implant. The most important advantage is to avoid the malposition of the glenoid component, solving problems like loosening or restriction in shoulder range of motion. We believe that a final cross check between preoperative planning and final control of the prostheses implanted, should be used in the future, but by now the GPS navigation system is a useful way to improve our surgery, especially in difficult cases. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 9 - 9
1 Jan 2016
Goyal N Stulberg SD
Full Access

Introduction. Patient specific instrumentation (PSI) generates customized guides from an MRI- or CT-based preoperative plan for use in total knee arthroplasty (TKA). PSI software executes the preoperative planning process. Several manufacturers have developed proprietary PSI software for preoperative planning. It is possible that each proprietary software has a unique preoperative planning process, which may lead to variation in preoperative plans among manufactures and thus variation in the overall PSI technology. The purpose of this study was to determine whether different PSI software generate similar preoperative plans when applied to a single implant system and given identical MR images. Methods. In this prospective comparative study, we evaluated PSI preoperative plans generated by Materialise software and Zimmer Patient Specific Instruments software for 37 consecutive knees. All plans utilized the Zimmer Persona™ CR implant system and were approved by a single experienced surgeon blinded to the other software-generated preoperative plan. For each knee, the MRI reconstructions for both software programs were evaluated to qualitatively determine differences in bony landmark identification. The software-generated preoperative plans were assessed to determine differences in preoperative alignment, component sizes, and resection depth. PSI planned bone resection was compared to actual bone resection to assess the accuracy of intraoperative execution. Results. Materialise and Zimmer PSI software displayed differences in identification of bony landmarks in the femur and tibia. Zimmer software determined preoperative alignment to be 0.5° more varus (p=0.008) compared to Materialise software. Discordance in femoral component size prediction occurred in 37.8% of cases (p<0.001) with 11 cases differing by one size and 3 cases differing by two sizes. Tibial component size prediction was 32.4% discordant (p<0.001) with 12 cases differing by 1 size. In cases in which both software planned identical femoral component sizes, Zimmer software planned significantly more bone resection compared to Materialise in the medial posterior femur (1.5 mm, p<0.001) and lateral posterior femur (1.4 mm, p<0.001). Discussion. The present study suggests that there is notable variation in the PSI preoperative planning process of generating a preoperative plan from MR images. We found clinically significant differences with regard to bony landmark identification, component size selection, and predicted bone resection in the posterior femur between preoperative plans generated by two PSI software programs using identical MR images and a single implant system. Surgeons should be prepared to intraoperatively deviate from PSI selected size by 1 size. They should be aware that the inherent magnitude of error for PSI bone resection with regard to both planning and execution is within 2–3 mm. Users of PSI should acknowledge the variation in the preoperative planning process when using PSI software from different manufacturers. Manufacturers should continue to improve three-dimensional MRI reconstruction, bony landmark identification, preoperative alignment assessment, component size selection, and algorithms for bone resection in order to improve PSI preoperative planning process


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 64 - 64
24 Nov 2023
Elsheikh A
Full Access

Aim. The localization of sequestrum in chronic osteomyelitis (COM) is crucial in preoperative planning. The identification of sequestrum on plain X-ray could be difficult. CT and MRI were reported to show the sequestrum. We aimed to analyze the sequestrum characteristics on 18F-FDG-PET-CT images. Methods. A prospective study included all patients diagnosed with long-bone chronic osteomyelitis. All patients had preoperative 18F-FDG-PET-CT. Images were analyzed using RadiAnt DICOM Viewer. Axial cuts were used to measure the Standard Uptake Ratio (SUV)max in the Region of Interest (ROI) in the sequestrum, the surrounding area, and the normal bone in the same cut. Surgical debridement was done as standard; samples were taken for microbiology and histopathology, and the intraoperative finding was documented. Results. Nineteen patients (17 males/2 females) were operated on in one center between October/2021 and Jan/2023 at a mean age of 32±18. There were 10 tibias, 7 femurs, one ulna, and one fibula. Ten had postoperative COM, six open fractures, and three hematogenous OM. They all showed sequestrum on PET-CT; the dead bone appeared void, surrounded by a halo of increased uptake. There was a trend of lower uptake in the sequestrum compared to the halo around. The mean SUVmax at the sequestrum was 4.18±3.16, compared to the surrounding halo, 7.08±5.81. The normal bone has a mean SUVmax of 1.61±1.42. Sequestrum was removed successfully in all cases. Conclusion. 18F-FDG-PET-CT can precisely localize the sequestrum preoperatively, it has a lower uptake than tissues around it. This would facilitate planning and improve the quality of debridement


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 33 - 33
24 Nov 2023
Pilskog K Høvding P Fenstad AM Inderhaug E Fevang JM Dale H
Full Access

Aim. Ankle fracture surgery comes with a risk of fracture-related infection (FRI). Identifying risk factors are important in preoperative planning, in management of patients, and for information to the individual patient about their risk of complications. In addition, modifiable factors can be addressed prior to surgery. The aim of the current paper was to identify risk factors for FRI in patients operated for ankle fractures. Method. A cohort of 1004 patients surgically treated for ankle fractures at Haukeland University hospital in the period of 2015–2019 was studied retrospectively. Patient charts and radiographs were assessed for the diagnosis of FRI. Binary logistic regression was used in analyses of risk factors. Regression coefficients were used to calculate the probability for FRI based on the patients’ age and presence of one or more risk factors. Results. FRI was confirmed in 87 (9%) of 1004 patients. Higher age at operation (p < 0.001), congestive heart failure (CHF), p = 0.006), peripheral artery disease (PAD, p = 0.001), and current smoking (p = .006) were identified as risk factors for FRI. PAD and CHF were the risk factors displaying the strongest association with FRI with an adjusted odds ratio of 4.2 (95% CI 1.8–10.1) and 4.7 (95% CI 1.6–14.1) respectively. Conclusions. The prevalence of FRI was 9% after surgical treatment of ankle fractures. The combination of risk factors found in this study demonstrate the need for a thorough, multidisciplinary, and careful approach when faced with an elderly or frail patient with an ankle fracture. The results of this study help the treating surgeons to inform their patients of the risk of FRI prior to ankle fracture surgery


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_6 | Pages 47 - 47
1 May 2021
Gigi R Gorrtzak Y Golden E Gabay R Rumack N Yaniv M Dadia S Segev E
Full Access

Introduction. Patient-specific instruments (PSI) and surgical-guiding templates are gaining popularity as a tool for enhancing surgical accuracy in the correction of oblique bone deformities Three-dimensional virtual surgical planning technology has advanced applications in the correction of deformities of long bones and enables the production of 3D stereolithographic models and PSI based upon a patient's specific deformity. We describe the implementation of this technology in young patients who required a corrective osteotomy for a complex three-plane (oblique plane) lower-limb deformity. Materials and Methods. Radiographs and computerized tomographic (CT) scans (0.5 mm slices) were obtained for each patient. The CT images were imported into post-processing software, and virtual 3D models were created by a segmentation process. Femoral and tibial models and cutting guides with locking points were designed according to the deformity correction plan as designed by the surgeon. The models were used for preoperative planning and as an intraoperative guide. All osteotomies were performed with the PSI secured in the planned position. Results. A total of 17 patients (9 males and 8 females, average age 14.7 years [range 8–24]) comprised the study group. All of the PSI were excellent fits for the planned bone surfaces during surgery. The osteotomies matched the preoperative planning simulation and allowed for easy fixation with pre-chosen plates. No intra- or postoperative complications were encountered. Surgery time was shortened (101 minutes) and intraoperative blood loose was less compared to historical cases. Clinical and radiographic follow-up findings showed highly satisfactory alignment of the treated extremities in all 17 patients. Conclusions. The use of 3D-printed models and patient-specific cutting guides with locking points increases accuracy, shortens procedure time, reduces intraoperative blood loss, and improves the outcome of osteotomies in young patients with complex oblique bone deformities


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_20 | Pages 2 - 2
1 Dec 2017
Seeber GH Kolbow K Maus U Kluge A Lazovic D
Full Access

Patient-specific instrumentation (PSI) has been greatly marketed in knee endoprosthetics for the past few years. By utilising PSI, the prosthesis´ accuracy of fit should be improved. Besides, both surgical time and hospital costs should be reduced. Whether these proposed advantages are achieved in medial UKA remains unclear yet. The aim of this study was to evaluate the preoperative planning accuracy, time saving, and cost effectiveness utilising PSI in UKA. Data from 22 patients (24 knees) with isolated medial unicompartmental knee osteoarthritis were analysed retrospectively. The sample comprised sixteen men and six women (mean age 61 ± 8 years) who were electively provided with a UKA utilising PSI between June 2012 and October 2014. For evaluation of preoperative planning accuracy (1) planned vs. implanted femoral component size, (2) planned vs. implanted tibial component size, and (3) planned vs. implanted polyethylene insert size were analysed. Since UKA is a less common, technically demanding surgery, depending in large part on the surgeon´s experience, preoperative planning reliability was also evaluated with regard to surgeon experience. Moreover, actual surgical time and cost effectiveness utilising PSI was evaluated. Preoperative planning had to be modified intraoperatively to a wide extend for gaining an optimal outcome. The femoral component had to be adjusted in 41.7% of all cases, the tibial component in 58.3%, and the insert in 87.5%. Less experienced surgeons had to change preoperative planning more often than experienced surgeons. Utilising PSI increased surgical time regardless of experience. Linear regression revealed PSI-planning and surgeon inexperience as main predictors for increased surgical time. Additionally, PSI increased surgical costs due to e.g. enlarged surgical time, license fees and extraordinary expenditure for MRI scans. The preoperative planning accuracy depends on many different factors. The advertised advantages of PSI could not be fully supported in case of UKA on the basis of the here presented data – especially not for the inexperienced surgeon


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 82 - 82
23 Feb 2023
Rossignol SL Boekel P Rikard-Bell M Grant A Brandon B Doma K O'Callaghan W Wilkinson M Morse L
Full Access

Glenoid baseplate positioning for reverse total shoulder replacements (rTSR) is key for stability and longevity. 3D planning and image-derived instrumentation (IDI) are techniques for improving implant placement accuracy. This is a single-blinded randomised controlled trial comparing 3D planning with IDI jigs versus 3D planning with conventional instrumentation. Eligible patients were enrolled and had 3D pre-operative planning. They were randomised to either IDI or conventional instrumentation; then underwent their rTSR. 6 weeks post operatively, a CT scan was performed and blinded assessors measured the accuracy of glenoid baseplate position relative to the pre-operative plan. 47 patients were included: 24 with IDI and 23 with conventional instrumentation. The IDI group were more likely to have a guidewire placement within 2mm of the preoperative plan in the superior/inferior plane when compared to the conventional group (p=0.01). The IDI group had a smaller degree of error when the native glenoid retroversion was >10° (p=0.047) when compared to the conventional group. All other parameters (inclination, anterior/posterior plane, glenoids with retroversion <10°) showed no significant difference between the two groups. Both IDI and conventional methods for rTSA placement are very accurate. However, IDI is more accurate for complex glenoid morphology and placement in the superior-inferior plane. Clinically, these two parameters are important and may prevent long term complications of scapular notching or glenoid baseplate loosening. Image-derived instrumentation (IDI) is significantly more accurate in glenoid component placement in the superior/inferior plane compared to conventional instrumentation when using 3D pre-operative planning. Additionally, in complex glenoid morphologies where the native retroversion is >10°, IDI has improved accuracy in glenoid placement compared to conventional instrumentation. IDI is an accurate method for glenoid guidewire and component placement in rTSA


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 12 - 12
23 Feb 2023
Hardwick-Morris M Twiggs J Miles B Balakumar J Walter WL
Full Access

Iliopsoas impingement occurs in between 5–30% of patients after hip arthroplasty and has been thought to only be caused by an oversized cup, cup malpositioning, or the depth of the psoas valley. However, no study has associated the relationship between preoperative measurements with the risk of impingement. This study sought to assess impingement between the iliopsoas and acetabular cup using a novel validated model to determine the risk factors for iliopsoas impingement. 413 patients received lower limb CT scans and lateral x-rays that were segmented, landmarked, and measured using a validated preoperative planning protocol. Implants were positioned according to the preference of ten experienced surgeons. The segmented bones were transformed to the standing reference frame and simulated with a novel computational model that detects impingement between the iliopsoas and acetabular cup. Definitions of patients at-risk and not at-risk of impingement were defined from a previous validation study of the simulation. At-risk patients were propensity score matched to not at-risk patients. 21% of patients were assessed as being at-risk of iliopsoas impingement. Significant differences between at-risk patients and not at-risk patients were observed in standing pelvic tilt (p << 0.01), standing femoral internal rotation (p << 0.01), medio-lateral centre-of-rotation (COR) change (p << 0.01), supine cup anteversion (p << 0.01), pre- to postoperative cup offset change (p << 0.001), postoperative gross offset (p = 0.009), and supero-inferior COR change (p = 0.02). Impingement between the iliopsoas and acetabular cup is under-studied and may be more common than is published in the literature. Previously it has been thought to only be related to cup size or positioning. However, we have observed significant differences between at-risk and not at-risk patients in additional measurements. This indicates that its occurrence is more complex than simply being related to cup position


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 32 - 32
1 Feb 2017
Netravali N Jamieson R
Full Access

Background. Despite the success of total hip arthroplasty (THA), there are still challenges including restoration of leg length, offset, and femoral version. The Tsolution One combines preoperative planning with an active robotic system to assist in femoral canal preparation during a THA. Purpose of Study. To demonstrate the use of an active robotic system in femoral implant placement and determine the accuracy of femoral implant position. This was evaluated in a cadaveric study. Study Design and Methods. Four THA's were performed in fresh frozen cadaveric hips with assistance of the TSolution One System for preparation of the femoral canal. CT scans of the hip were used as input for TPLAN preoperative planning software to position the implants in three-dimensions (3D). The intraoperative process includes exposure of the joint using a posterolateral approach, fixation of the femur relative to the TCAT system, and registration of the femur. TCAT then actively milled the femoral canal in each of the cases after which Depuy Trilock implants were inserted by the surgeon. Only the femoral stem implants were considered in this study. Postoperative CT was used to compare actual implant position with preoperatively planned implant position in 3D. The translations between the centroids of the implant positions were compared. Findings of Study. All femoral stems were successfully implanted with no complications. Implant position very closely matched the preoperative plan. Compared to the preoperative plan, the mean (± SD) positions of the centroid of the implant were off by 0.6 (±0.6) mm in the medial-lateral direction, 0.8 (±0.3) mm in the anterior-posterior direction, and 2.0 (±1.3) mm in the superior-inferior direction. No intraoperative fractures occurred. A sample of the preoperative planned position (left) and actual postoperative position (right) as seen on TPLAN can be seen in Figure 1. An example of the final 3D implant position in blue as compared to the preoperative implant position in red can be seen in Figure 2. Conclusions. Overall, the post-operative stems positions were superior compared to the preoperative plan and it is believed that this is likely a result of not impacting the stems enough during the procedure. The medial-lateral and anterior-posterior stem positions were within 1 mm of what was planned. Active robotics can successfully be used to improve accuracy, precision, and reproducibility when considering final implant position in THA. These improvements can reduce unwanted human error and reduce complications. Further in vivo study is planned to demonstrate the clinical benefits of such improved precision


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_10 | Pages 74 - 74
1 Oct 2022
Osinga R Sapino G Guillier D Schaefer D Clauss M d. Summa P
Full Access

Aim. In the context of total knee arthroplasty (TKA), trauma with perigenicular fracture fixation or oncological surgical treatment, soft tissue defects can expose critical structures such as the extensor apparatus, the knee joint, bone or implants. This work compares soft tissue reconstruction (STR) between a classical pedicled gastrocnemius (GC) muscle flap and a pedicled chimeric sural artery perforator (SAP) musculocutaneous GC flap in complex orthoplastic scenarios. Method. A retrospective study was conducted on prospectively maintained databases in three University Hospitals from January 2016 to February 2021 after orthopaedic, traumatological or oncological treatment. All patients with a perigenicular soft tissue defect and implant-associated infection were included undergoing STR either with a pedicled GC flap or with a pedicled chimeric SAP-GC flap. The outcome analysis included successful STR and flap related complications. The surgical timing, preoperative planning and surgical technique are discussed together with the postoperative rehabilitation protocol. Results. 43 patients were included (22 GC muscle flaps, 21 SAP-GC musculocutaneous flaps). The GC and SAP-GC patient group were comparable in terms of age, comorbidities, defect size and follow-up. The incidence of flap related complications was comparable among the two groups. Specifically, in the SAP-GC group 1 wound dehiscence at the recipient site occurred as well as 1 distal muscle flap necrosis, 1 distal skin flap necrosis, 1 donor site infection and 1 donor site wound dehiscence. Furthermore, the donor site was closed in 9 patients while a skin graft was used in 12 patients. A significant difference was recorded with regard to re-raising the flap for further orthopaedic treatment: In the SAP-CG group (re-raise in 11 patients) no problems occurred while in the GC group (re-raise in 14 patients) in 6 patients the soft tissue did not heal completely. Conclusions. According to our clinical experience, the pedicled chimeric SAP-CG musculocutaneous flap is a relevant further development of the classical GC workhorse flap for perigenicular STR, in multiple staged procedures


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 54 - 54
1 Jan 2016
Idei J Sekiguchi M Kubota A Ohikata Y Yamamoto K Tsuchiya K Murase T
Full Access

Introduction. Recently, computer-aided orthopaedic surgery has enabled three dimensional (3D) preoperative planning, navigation systems and patient matched instrument, and they provide good clinical results in total knee arthroplasty. However, the preoperative planning methods and the criteria in total elbow arthroplasty (TEA) still have not sufficiently established due to the uncertainty of 3D anatomical geometry of the elbow joints. In order to clarify the 3D anatomical geometry, this study measured 3D bone models of the normal elbow joints. Additionally this study attempted to apply the 3D preoperative planning to ordinary surgery. Then the postoperative position of implant has evaluated as compared with the position in 3D preoperative planning. Methods. Three dimensional bone measurements on 4 normal cases were performed. Three dimensional bone models were constructed with CT image using Bone Viewer®(ORTHREE Co., Ltd.). TEA was performed with FINE® Total Elbow System (Nakashima Medical Co., Ltd.) for 3 rheumatoid arthritis (RA) cases (Fig. 1). Three dimensional preoperative planning was based on this bone measurement, and postoperative position of implant were evaluated. The postoperative assessments were evaluated by superimposing preoperative planning image on postoperative CT image using Bone Simulator® (ORTHREE Co., Ltd.). This study only covers humeral part. Results. The results of 3D bone measurements on 4 normal cases shows the average internal rotation angle between the flexion-extension axis and the epicondyles axis in the distal humerus was 2.2 degrees. The average valgus tilt of the distal humerus was 3.7 degrees. Postoperative position of humeral component for 3 RA cases was installed at proximal and valgus position compared to the preoperative planning. Discussion. This study indicates that ordinary two dimensional criteria and 3D anatomical one in the elbow joint may be different in several bony landmarks such as rotation, varus and valgus. Additionally these results show the differences between postoperative position of implant and preoperative position in 3D planning. More studies need to be conducted to validate postoperative evaluation and preoperative planning


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 131 - 131
1 Feb 2020
Greene A Parsons I Jones R Youderian A Byram I Papandrea R Cheung E Wright T Zuckerman J Flurin P
Full Access

INTRODUCTION. The advent of CT based 3D preoperative planning software for reverse total shoulder arthroplasty (RTSA) provides surgeons with more data than ever before to prepare for a case. Interestingly, as the usage of such software has increased, further questions have appeared over the optimal way to plan and place a glenoid implant for RTSA. In this study, a survey of shoulder specialists from the American Shoulder and Elbow Society (ASES) was conducted to examine thought patterns in current RTSA implant selection and placement. METHODS. 172 ASES members completed an 18-question survey on their thought process for how they select and place a RTSA glenoid implant. Data was collected using a custom online Survey Monkey survey. Surgeon answers were split into two cohorts based on number of arthroplasties performed per year: between 0–75 was considered low volume (LV), and between 75–200+ was considered high volume (HV). Data was analyzed for each cohort to examine differences in thought patterns, implant selection, and implant placement. RESULTS. 70 surgeons were grouped into the LV cohort, and 102 surgeons were grouped into the HV cohort. 46.1% of surgeons in the HV cohort reported using a preoperative planning software for the majority of cases, 48% reported seldom use, and 5.9% reported no use. In the LV cohort, 41.4% reported use for the majority of cases, 24.3% reported seldom use, and 34.3% reported no use (Figure 1). When questioned on what percentage of RTSA cases do surgeons use augmented glenoid implants, 26.7% in the HV cohort responded never using augments vs. 32.4% in the LV cohort, 32.7% responded using augments <15% of the time in the HV cohort vs. 30.9% in the LV cohort, 26.7% responded using augments between 15–45% of the time in the HV cohort vs. 27.9% in the LV cohort, and 13.8% responded using augments >45% of the time in the HV cohort vs. 8.8% in the LV cohort (Figure 2). When asked what the maximum allowable superior inclination for a RTSA glenoid implant is, surgeons answered 10° 20.6% of the time in the HV cohort vs. 30% in the LV cohort, 5° 18.6% of the time in the HV cohort vs. 25.7% in the LV cohort, 0° 38.2% of the time in the HV cohort vs. 25.7% in the LV cohort, and no fixed degree 22.5% of the time in the HV cohort vs. 18.6% in the LV cohort (Figure 3). CONCLUSION. The results of this study show that even within a group of highly trained surgeons, there are widely varying opinions on how to plan the optimal RTSA case. Variation between high and low volume surgeons reveals even greater differences, suggesting that experience affects thought pattern. Despite these differences, there is no way to prove the optimal implant selection and placement without consistent data collection and long-term clinical outcomes. Machine learning on large preoperative planning databases combined with clinical outcomes data may provide further clarity on optimal implant placement and selection. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 48 - 48
1 Dec 2022
Yee N Iorio C Shkumat N Rocos B Ertl-Wagner B Green A Lebel D Camp M
Full Access

Neuromuscular scoliosis patients face rates of major complications of up to 49%. Along with pre-operative risk reduction strategies (including nutritional and bone health optimization), intra-operative strategies to decrease blood loss and decrease surgical time may help mitigate these risks. A major contributor to blood loss and surgical time is the insertion of instrumentation which is challenging in neuromuscular patient given their abnormal vertebral and pelvic anatomy. Standard pre-operative radiographs provide minimal information regarding pedicle diameter, length, blocks to pedicle entry (e.g. iliac crest overhang), or iliac crest orientation. To minimize blood loss and surgical time, we developed an “ultra-low dose” CT protocol without sedation for neuromuscular patients. Our prospective quality improvement study aimed to determine: if ultra-low dose CT without sedation was feasible given the movement disorders in this population; what the radiation exposure was compared to standard pre-operative imaging; whether the images allowed accurate assessment of the anatomy and intra-operative navigation given the ultra-low dose and potential movement during the scan. Fifteen non-ambulatory surgical patients with neuromuscular scoliosis received the standard spine XR and an ultra-low dose CT scan. Charts were reviewed for etiology of neuromuscular scoliosis and medical co-morbidities. The CT protocol was a high-speed, high-pitch, tube-current modulated acquisition at a fixed tube voltage. Adaptive statistical iterative reconstruction was applied to soft-tissue and bone kernels to mitigate noise. Radiation dose was quantified using reported dose indices (computed tomography dose index (CTDIvol) and dose-length product (DLP)) and effective dose (E), calculated through Monte-Carlo simulation. Statistical analysis was completed using a paired student's T-test (α = 0.05). CT image quality was assessed for its use in preoperative planning and intraoperative navigation using 7D Surgical System Spine Module (7D Surgical, Toronto, Canada). Eight males and seven females were included in the study. Their average age (14±2 years old), preoperative Cobb angle (95±21 degrees), and kyphosis (60±18 degrees) were recorded. One patient was unable to undergo the ultra-low dose CT protocol without sedation due to a co-diagnosis of severe autism. The average XR radiation dose was 0.5±0.3 mSv. Variability in radiographic dose was due to a wide range in patient size, positioning (supine, sitting), number of views, imaging technique and body habitus. Associated CT radiation metrics were CTDIvol = 0.46±0.14 mGy, DLP = 26.2±8.1 mGy.cm and E = 0.6±0.2 mSv. CT radiation variability was due to body habitus and arm orientation. The radiation dose differences between radiographic and CT imaging were not statistically significant. All CT scans had adequate quality for preoperative assessment of pedicle diameter and orientation, obstacles impeding pedicle entry, S2-Alar screw orientation, and intra-operative navigation. “Ultra-low dose” CT scans without sedation were feasible in paediatric patients with neuromuscular scoliosis. The effective dose was similar between the standard preoperative spinal XR and “ultra-low dose” CT scans. The “ultra-low dose” CT scan allowed accurate assessment of the anatomy, aided in pre-operative planning, and allowed intra-operative navigation despite the movement disorders in this patient population