Advertisement for orthosearch.org.uk
Results 1 - 20 of 30
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 16 - 16
1 Mar 2017
Twiggs J Miles B McMahon S Bare J Solomon M Hogan J Roberts B Theodore W
Full Access

Introduction. Both navigation and instrumented bone referencing use unreliable intraoperative landmark identification or fixed referencing rules which don't reflect patient specific variability. PSI, however, lacks the flexibility to adapt to soft tissue factors not known during preoperative planning, in addition to suffering error from guide fit. A novel method of recreating surgical cut planes that combines preoperative image based identification of landmarks and planning with intraoperative adjustability is under development. This method uses an intraoperative 3D scan of the bone in conjunction with a preoperative CT scan to achieve the desired cuts and so avoids issues of intraoperative identification of landmarks. Method. During TKA surgery, a reference device is placed on the exposed femur. The device is used to position a target block which is pinned to the bone (see Figure 1). The condyles and target block are then scanned, the process taking a second to complete. This 3D scan is filtered to remove extraneous bodies and noise leaving only the bony geometry and target block (see Figure 2). The scan is then reconciled to the known bone geometry taken from preoperative CT scans. A cutting block is then fixed to the target block with a reference array visible to the camera attached. Pre-planned cut planes on a computer model of the bone are compared to the position and configuration of the distal cutting guide. Software guides the surgeon in real-time on the necessary configuration changes required to align the cutting block. The cut is performed on the distal femur, the cutting guide removed from the target-block, and a second scan performed. The software repeats the filtering and alignment processes and provides the surgeon with data on how closely the performed cut matches the alignment planned. Results. Two patients underwent this method alongside traditional alignment techniques. The initial 3D scan of the distal femoral condyles of the patients was matched to their corresponding CT scans. The first case had a mean error of 0.65 mm with 85% of errors falling below a magnitude of 1.16 mm and 58% falling below the case mean (see Figure 3). The second case had a mean error of 0.39 mm with 84% of errors falling below 0.70 mm and 60% falling below the case mean. It should be noted that the error introduced was due to the omission of soft tissue such as the PCL in the CT scan. Exposed bone portions of the scan geometry matched well with the CT scan, with error magnitudes significantly below the mean. Discussion. The ability to obtain useful surgical alignment using preoperatively identified landmarks, alongside the small space requirements of a modern 3D scanner is sharply contrasted against the large space requirements and need for intraoperative probing of traditional navigation systems. Likewise, the use of preoperative planning and landmark identification to overcome intraoperative data capture variability mirrors that of PSI, but allows for potentially much greater accuracy of execution as the issue of guide fit and topology variation is avoided while intraoperative flexibility is maintained


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 112 - 112
1 Dec 2016
Lonner J
Full Access

The discussion of outpatient unicompartmental knee arthroplasty (UKA) requires proof that it can be done safely and effectively, and also begs the question of whether it can be performed in an ambulatory surgery center (ASC) rather than a general hospital (which raises costs and is typically less efficient). Successful outpatient UKA requires carefully crafted algorithms/protocols, home support, preoperative planning and preparation, expectation management, risk stratification (not everyone is a candidate), perioperative pain management and buy-in from patients, support networks and the health care team. Relatively little data is available on the feasibility, safety and potential cost savings associated with this shift in care. We evaluated the costs and short term outcomes and complications of 150 consecutive UKAs performed in an ASC compared to those done in a general hospital both on an inpatient and outpatient basis. Determination of the setting of the outpatient surgery was made based on geographic preference by the patients; otherwise choice of inpatient or outpatient surgery in the hospital was left to the discretion of the surgeon and was primarily based on the patients' comorbidity profile and circumstances of home help. Total direct facility costs were calculated, including institutional supplies and services, anesthesia services, implants, additional PACU medications and services required, and costs associated with operating room use. Only total cost was evaluated, as it is the most consistent cost variable amongst the two institutions evaluated. The mean total direct cost of UKA in a general community hospital with an overnight stay was 1.24 and 1.65 times greater than the cost of UKA performed at the same hospital or an ASC on an outpatient basis, respectively. The mean total direct cost of outpatient UKA in a general hospital was 1.33 times greater than the mean total cost of UKA performed in an ASC. Semi-autonomous robotic technology has been introduced to optimise accuracy of implant positioning and soft tissue balance in UKA, with the expectation of resultant improvement in durability and implant survivorship. Currently, nearly 20% of UKA's in the U.S. are being performed with robotic assistance. It is anticipated that there will be substantial growth in market penetration over the next decade, projecting that nearly 37% of UKA's and 23% of TKA's will be performed with robotics in 10 years (Medical Device and Diagnostic Industry, March 5, 2015). First generation robotic technology improved substantially implant position compared to conventional methods; however, high capital costs, uncertainty regarding the value of advanced technologies, and the need for preoperative CT scans were barriers to broader adoption. Newer image-free robotic technology offers an alternative method for further optimizing implant positioning and soft tissue balance without the need for preoperative CT scans and with price points that make it suitable for use in an ASC. Currently, as a result of cost and other practical issues, <1% of first generation robotic technologies are being used in ASC's. Alternatively, more than 35% of second generation robotic systems are in use in ASC's for UKA, due to favorable pricing. In conclusion, UKA can be safely performed in the outpatient setting in select patients. Additionally, we demonstrated a substantial cost savings when UKA is performed in an outpatient setting and care is shifted from a general community hospital to an ASC. Finally, robotics can be utilised to optimise accuracy of implant placement and soft tissue balance in UKA, and newer image-free robotic technology is cost effective for outpatient UKA


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 53 - 53
1 Feb 2020
De Meo F Ascani D Cacciola G Bernardoni M Cavaliere P
Full Access

Preoperative planning is a crucial step for total hip arthroplasty (THA), and 2D X-ray images are commonly used. The planning aims to provide the correct implant size, restore functional biomechanical conditions and avoid early complication such as dislocation, leg length discrepancy or abductors insufficiency. Limitations of 2D planning, besides the low accuracy in sizing, concerns the inability of planning the anteversion of both acetabular and femoral component on axial plane. Also, the verification of the planning intraoperatively is wholly left to qualitative measurements and the surgeon's experience. The need for having a more accurate and functional preoperative planning has been addressed using 3D models. The MyHip Planner (MHP) (Medacta International, Castel San Pietro, Switzerland), is a preoperative planning software which through artificial intelligent algorithm converts the CT scans into a 3D model that perfectly match the patient's anatomy. Then, automatic positioning of the implants is performed following the personal settings of the surgeon which will check and validate the planning, a personalized simulation of six daily activities to detect impingement of implants and bones. The MyHip Verifier (MHV) intraoperatively verifies the execution of the planning in terms of leg length and offset using two fluoroscopic images. Also, the size and cup angles can be calculated. The purpose of the present study was to validate the accuracy of the MHP [Fig 1] and MHV [Fig 2]. The dataset consisted of 13 patients who underwent primary uncemented THA. Each patient had a preoperative CT scan, intraoperative fluoroscopy, and postoperative CT scan after the surgery. The CT protocol used was low radiation (0,2 mm slicing for the pelvis, 0,5 mm for knees and ankles). The patients have been preoperatively planned used the MPH, and the accuracy of the components size prediction has been evaluated by comparing the preoperative planned values with the surgical reports. The MVH calculated the leg length and offset in terms of the difference between the preoperative and postoperative position of the femur concerning the pelvis. The accuracy of the measurements has been evaluated using postoperative CT scans. The MPH was able to predict the implanted size in 83% of the patient for the femoral stem and 96% for the acetabular component. The accuracy of the MVH in measuring the leg length was under 2 mm (1,6 ± 0,7 mm) while the offset was 2,5±1,6 mm. The cup angles were 5±1,1deg and 2,3±1,3deg for the anteversion and inclination, respectively. The average cup anteversion was 28,3°, mean cup inclination was 42,6°; femoral offset and leg length was restored in 96,5% of patients within a range of ±3 mm concerning the preoperative position. The results demonstrated the reliability of the MPH in predicting the implant size, and the accuracy of the MVH to verify the execution of the plan intraoperatively. The two software can be used in the clinical routine to improve the clinical outcome in THA. Limitations of this study are represented mainly by the small cohort of patients involved. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 41 - 41
1 Dec 2013
D'Lima D Patil S Bunn A Bugbee W Colwell C
Full Access

Introduction:. Despite over 95% long-term survivorship of TKA, 14–39% of patients express dissatisfaction due to anterior knee pain, mid-flexion instability, reduction in range of flexion, and incomplete return of function. Changing demographics with higher expectations are leading to renewed interest in patient-specific designs with the goal of restoring of normal kinematics. Improved imaging and image-processing technology coupled with rapid prototyping allow manufacturing of patient-specific cutting guides with individualized femoral and tibial components with articulating surfaces that maximize bony coverage and more closely approximate the natural anatomy. We hypothesized that restoring the articular surface and maintaining medial and lateral condylar offset of the implanted knee to that of the joint before implantation would restore normal knee kinematics. To test this hypothesis we recorded kinematics of patient-specific prostheses implanted using patient-specific cutting guides. Methods:. Preoperative CT scans were obtained from nine matched pairs of human cadaveric knees. One of each pair was randomly assigned to one of two groups: one group implanted with a standard off-the-shelf posterior cruciate-retaining design using standard cutting guides based on intramedullary alignment; the contralateral knee implanted with patient-specific implants using patient-specific cutting guides, both manufactured from the preoperative CT scans. Each knee was tested preoperatively as an intact, normal knee, by mounting the knee on a dynamic, quadriceps-driven, closed-kinetic-chain Oxford knee rig (OKR), simulating a deep knee bend from 0° to 120° flexion. Following implantation with either the standard or patient-specific implant, knees were mounted on the OKR and retested. Femoral rollback, tibiofemoral rotation, tibial adduction, patellofemoral tilt and shift were recorded using an active infrared tracking system. Results:. To reduce the effect of variability, change in each kinematic measure was quantified as the absolute difference between the normal kinematic measure and the same measure after implantation (10° flexion increments). The cumulative difference from normal kinematics was calculated by summing the area beneath the curve (Fig 2). Cumulative differences in kinematics from normal were statistically lower for the patient-specific group compared to the standard group for all measures except patellar shift (Fig 2, paired t-test). Discussion:. Knee kinematics with the patient-specific design more closely approximated normal femoral rollback and tibial adduction than knees with the standard design. Femoral rollback is significantly closer qualitatively and quantitatively to normal in specimens implanted with patient-specific designs (Figs 1). The tibia rotated internally with flexion; however, the patient-specific group more closely approximated normal rotation. The patient-specific group more closely approximated normal tibial adduction suggesting ligament balance was better restored. Due to substantial differences in articular morphology among genders, races and patients, it is impossible to provide multiple sized implants to address the full range of inter-patient variability. Patient-specific designs that remove this variation, restore normal articular geometry, and maintain alignment are more likely to result in normal kinematics. Our results support the hypothesis that knees with patient-specific implants generate kinematics more closely resembling normal knee kinematics than standard knee designs. Clinical outcome studies are necessary to determine if our results translate into better outcomes


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 30 - 30
1 Apr 2019
Perticarini L Medetti M Benazzo FM
Full Access

BACKGROUND. Total hip revision surgery in cases with previous multiple reconstructive procedures is a challenging treatment due to difficulties in treatment huge bone defects with standard revision prosthetic combinations. A new specially made production system in Electron-Beam Melting (EBM) technology based on a precise analysis of patients' preoperative CT scans has been developed. METHODS. Objectives of design customization in difficult cases are to correctly evaluate patient's anatomy, to plan a surgical procedure and to obtain an optimal fixation to a poor bone stock. The 3D Printing (EBM) technology permits to create an extremely flexible patient matching implant and instrument, with material performances not viable with standard manufacturing process. Dedicated visual 3D tools and instrumentations improve implants congruency according to preoperative plan. Primary stability is enhanced and tailored on patient's anatomy by means of press-fit, iliac stems and the high friction performances of Trabecular Titanium matrix. The use of bone screws and their position is designed to enhance primary stability, even in critical bone conditions, avoiding implant stress shielding and allowing bone integration. 4 cases (2 men and 2 women) of acetabular customized implants were performed. Mean age at surgery was 51.5 years (range 25–72). Patients were reviewed clinically and radiographically at follow-up. RESULTS. No signs of miss-match between intraoperative bone conditions and pre-operative planning were observed. No additional bone grafts or further native bone removal were needed. Biomechanical parameters were restored by using internal modularity (i.e. face-changers / angled spacers). Face-changers allow to correct coverage and anteversion of the acetabular system. Incompatibility or impingement between the stems and new acetabular component was not observed and stem revision was performed in one case. On-table stability proved excellent and no intraoperative complications were observed. All patients underwent an immediate mobilization with full weight-bearing. Mean Harris Hip Score increased significantly from 13.9 (range 6.9–20.6) preoperatively to 75.8 (range 53.9–94) at last follow-up (mean 17.5, range: 10–33), showing an improvement in terms of both pain relief, function and joint mobility. Radiographically neither signs of instability, migration nor tilting were observed. No case of dislocation nor infection were recorded. CONCLUSION. A detailed anatomical reconstruction, in-depth preoperative planning, custom-implant design, high performance of the 3D-printing technology, system modularity and patient-specific surgical tools permitted an effective restoration of the biomechanical joint parameters in these complex revision cases. The optimal primary stability of the implants promoted an early osseointegration with the remaining bone stock. Further studies shall be necessary to assess the performance of these Implants at long-term follow-up


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 130 - 130
1 Apr 2019
Tamura K Takao M Hamada H Sakai T Sugano N
Full Access

Introduction. Most of patients with unilateral hip disease shows muscle volume atrophy of pelvis and thigh in the affected side because of pain and disuse, resulting in reduced muscle weakness and limping. However, it is unclear how the muscle atrophy correlated with muscle strength in the patient with hip disorders. A previous study have demonstrated that the volume of the gluteus medius correlated with the muscle strength by volumetric measurement using 3 dimensional computed tomography (3D-CT) data, however, muscles influence each other during motions and there is no reports focusing on the relationship between some major muscles of pelvis and thigh including gluteus maximus, gluteus medius, iliopsoas and quadriceps and muscle strength in several hip and knee motions. Therefore, the purpose of the present study is to evaluate the relationship between muscle volumetric atrophy of major muscles of pelvis and thigh and muscle strength in flexion, extension and abduction of hip joints and extension of knee joint before surgery in patients with unilateral hip disease. Material and Methods. The subjects were 38 patients with unilateral hip osteoarthritis, who underwent hip joint surgery. They all underwent preoperative computed tomography (CT) for preoperative planning. There were 6 males and 32 females with average age 59.5 years old. Before surgery, isometric muscle strength in hip flexion, hip extension, hip abduction and knee extension were measured using a hand held dynamometer (µTas F-1, ANIMA Japan). Major muscles including gluteus maximus, gluteus medius, iliopsoas and quadriceps were automatically extracted from the preoperative CT using convolutional neural networks (CNN) and were corrected manually by the experienced surgeon. The muscle volumetric atrophy ratio was defined as the ratio of muscle volume of the affected side to that of the unaffected side. The muscle weakness ratio was defined as the ratio of muscle strength of the affected side to that of the unaffected side. The correlation coefficient between the muscle atrophy ratio and the muscle weakness ratio of each muscle were calculated. Results. The average muscle atrophy ratio was 84.5% (63.5%–108.2%) in gluteus maximus, 86.6% (65.5%–112.1%) in gluteus medius, 81.0% (22.1%–130.8%) in psoas major, and 91.0% (63.8%–127.0%) in quadriceps. The average muscle strength ratio was 71.5% (0%–137.5%) in hip flexion, 88.1% (18.8%–169.6%) in hip abduction, 78.6% (21.9%–130.1%) in hip extension and 84.3% (13.1%–122.8%) in knee extension. The correlation coefficient between the muscle atrophy and the ratio of each muscle strength between the affected and unaffected side were shown in Table 1. Conclusion. In conclusion, the muscle atrophy of gluteus medius muscle, psoas major muscle and quadriceps muscle significantly correlated with the muscle weakness in hip flexion. The muscle atrophy of psoas major muscle and quadriceps muscle also significantly correlated with the muscle weakness in knee extension. There were no significant correlation between the muscle atrophy and the muscle weakness in hip extension and abduction


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 109 - 109
1 May 2019
Berend K
Full Access

Although the introduction of ultraporous metals in the forms of acetabular components and augments has substantially improved the orthopaedic surgeon's ability to reconstruct severely compromised acetabuli, there remain some revision THAs that are beyond the scope of cups, augments, and cages. In situations involving catastrophic bone loss, allograft-prosthetic composites or custom acetabular components may be considered. Custom components offer the potential advantages of immediate, rigid fixation with a superior fit individualised to each patient. These custom triflange components require a preoperative CT scan with three-dimensional (3-D) reconstruction using rapid prototyping technology, which has evolved substantially during the past decade. The surgeon can fine-tune exact component positioning, determine location and length of screws, modify the fixation surface with, for example, the addition of hydroxyapatite, and dictate which screws will be locked to enhance fixation. The general indications for using custom triflange components include: (1) failed prior salvage reconstruction with cage or porous metal construct augments, (2) large contained defects with possible discontinuity, (3) known pelvic discontinuity, and (4) complex multiply surgically treated hips with insufficient bone stock to reconstruct using other means. We previously reported on our center's experience with 23 patients (24 hips) treated with custom triflange components with minimum 2-year follow-up. This method of reconstruction was used in a cohort of patients with Paprosky Type 3B acetabular defects, which represented 3% (30 of 955) of the acetabular revisions we performed during the study period of 2003 to 2012. At a mean follow-up of 4.8 years (range, 2.3 – 9 years) there were four subsequent surgical interventions: two failures secondary to sepsis, and one stem revision and one open reduction internal fixation for periprosthetic femoral fracture. There were two minor complications managed nonoperatively, but all of the components were noted to be well-fixed with no obvious migration or loosening observed on the most recent radiographs. Harris hip scores improved from a mean of 42 (SD ±16) before surgery to 65 (SD ±18) at latest follow-up (p < 0.001). More recently, we participated in a multi-center study of 95 patients treated with reconstruction using custom triflange components who had a mean follow-up of 3.5 years. Pelvic defects included Paprosky Type 2C, 3A, 3B and pelvic discontinuity. Concomitant femoral revision was performed in 21 hips. Implants used a mean of 12 screws with 3 locking screws. Twenty of 95 patients (21%) experienced at least one complication, including 6% dislocation, 6% infection, and 2% femoral-related issues. Implants were ultimately removed in 11% of hips. One hip was revised for possible component loosening. Survivorship with aseptic loosening as the endpoint was 99%. Custom acetabular triflange components represent yet another tool in the reconstructive surgeon's armamentarium. These devices can be helpful in situations of catastrophic bone loss, achieving reliable fixation. Clinical results are inferior to both primary THA and more routine revision THA. Patients and surgeons should be aware of the increased complications associated with these complex hip revisions


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 118 - 118
1 Apr 2019
Wakelin E Twiggs J Roe J Bare J Shimmin A Suzuki L Miles B
Full Access

Introduction & aims. Resurfacing of the patella is an important part of most TKA operations, usually using an onlay technique. One common practice is to medialise the patellar button and aim to recreate the patellar offset, but most systems do not well control alignment of the patella button. This study aimed to investigate for relationships between placement and outcomes and report on the accuracy of patella placement achieved with the aid of a patella Patient Specific Guide (PSG). Method. A databse of TKR patients operated on by five surgeons from 1-Jan-2014 who had a pre-operative and post-operative CT scan and 6-month postoperative Knee Osteoarthritis and Outcome (KOOS) scores were assessed. Knees were excluded if the patella was unresurfaced or an inlay technique was used. All knee operations were performed with the Omni Apex implant range and used dome patella buttons. A sample of 40 TKRs had a patella PSG produced consisting of a replication of an inlay barrel shaped to fit flush to the patient's patella bone. The centre of the quadriceps tendon on the superior pole of the patella bone and the patella tendon on the inferior were landmarked. 3D implant and bone models from the preoperative CT scans were registered to the post-operative CT scan. The flat plane of the implanted patella button was determined and the position of the button relative to the tendon attachments calculated. Coverage of the bone by the button and patellar offset reconstruction were also calculated. The sample of 40 TKRs for whom a patella PSG was produced had their variation in placement assessed relative to the wider population sample. All surgeries were conducted with Omni Apex implants using a domed patella. Results. A total of 322 patients were identified in the database, and 82 were subsequently excluded as inlay rather than onlay patella. 59% (142) were female and the average age was 68.9 years (+/− 7.2). Coverage percentage of the cut patella surface by the button was 67% (± 7%), with 83% (200) knees having greater than 60%, and 40% (96) greater than 70%. Component position was on average centralised in terms of mediolateral position (0.09mm ± 1.93 lateral). When comparing the alignment of the patients whose knees used PSG guides with those who did not, it was found there was a statistically significant reduction in the variation that both external rotation error and flexional error had (p-values 0.048 and 0.022 respectively.). Excess medialisation of the patella button was found to weakly correlate with reduced postoperative KOOS symptoms scores (coefficient=0.14, p-value = 0.035). When subdivided into patients who reported knee clicking sometimes or more often and those who did not, patients with highly medialised buttons had a 1.5× likelihood of reporting clicking of their knee joint (p-value = 0.036). Conclusions. The patella-femoral joint remains a crucial component in the TKA knee, but the process of resurfacing the bone is not well controlled and can negatively influence patient outcomes. PSG's are one potential mechanism of controlling patella component alignment


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 53 - 53
1 Apr 2018
Pierrepont J Stambouzou C Bruce W Bare J Boyle R McMahon S Shimmin A
Full Access

Introduction & aims. Correct prosthetic alignment is important to the longevity and function of a total hip replacement (THR). With the growth of 3-dimensional imaging for planning and assessment of THR, the importance of restoring, not just leg length and medial offset, but anterior offset has been raised. The change in anterior offset will be influenced by femoral anteversion, but there are also other factors that will affect the overall change after THR. Consequently, the aim of this study was to investigate the relationship between anterior offset and stem anteversion to determine the extent to which changing anteversion influences anterior offset. Method. Sixty patients received a preoperative CT scan as part of their routine planning for THR (Optimized Ortho, Sydney). All patients received a Trinity cementless shell and a cemented TaperFit stem (Corin, UK) by the senior author through an anterolateral approach. Stem anteversion was positioned intraoperatively to align with cup anteversion via a modified Ranawat test. Postoperatively, patients received a CT scan which was superimposed onto the pre-op CT scan. The difference between native and achieved stem anteversion was measured, along with the 3-dimensional change in head centre from pre-to post-op. Finally, the relationship between change in stem anteversion and change in anterior offset was investigated. Results. Mean change in anterior offset was −2.3mm (−14.0 to 7.0mm). Mean change in anteversion from native was −3.0° (−18.8° to 10.5°). There was a strong correlation between change in anterior offset and change in anteversion, with a Pearson correlation coefficient of 0.89. A 1° increase in anteversion equated to a 0.7mm increase in anterior offset. Conclusions. A change in the anteroposterior position of the femoral head is primarily affected by a change in stem anteversion, with a 1° increase in anteversion equating to a 0.7mm increase in anterior offset. The AP position of the stem in the canal, along with the flexion of the stem will also contribute. Given the well-recognised influence of leg length, medial offset and combined anteversion on restoring hip function, it seems reasonable to assume that anterior offset will also have a significant effect on the biomechanics of the replaced hip


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_5 | Pages 55 - 55
1 Feb 2016
Grupp R Otake Y Murphy R Parvizi J Armand M Taylor R
Full Access

Computer-aided surgical systems commonly use preoperative CT scans when performing pelvic osteotomies for intraoperative navigation. These systems have the potential to improve the safety and accuracy of pelvic osteotomies, however, exposing the patient to radiation is a significant drawback. In order to reduce radiation exposure, we propose a new smooth extrapolation method leveraging a partial pelvis CT and a statistical shape model (SSM) of the full pelvis in order to estimate a patient's complete pelvis. A SSM of normal, complete, female pelvis anatomy was created and evaluated from 42 subjects. A leave-one-out test was performed to characterise the inherent generalisation capability of the SSM. An additional leave-one-out test was conducted to measure performance of the smooth extrapolation method and an existing “cut-and-paste” extrapolation method. Unknown anatomy was simulated by keeping the axial slices of the patient's acetabulum intact and varying the amount of the superior iliac crest retained; from 0% to 15% of the total pelvis extent. The smooth technique showed an average improvement over the cut-and-paste method of 1.31 mm and 3.61 mm, in RMS and maximum surface error, respectively. With 5% of the iliac crest retained, the smoothly estimated surface had an RMS surface error of 2.21 mm, an improvement of 1.25 mm when retaining none of the iliac crest. This anatomical estimation method creates the possibility of a patient and surgeon benefiting from the use of a CAS system and simultaneously reducing the patient's radiation exposure


Introduction. A femoral rotational alignment is one of the essential factors, affecting the postoperative knee balance and patellofemoral tracking in total knee arthroplasty (TKA). To obtain an adequate alignment, the femoral component must be implanted parallel to the surgical epicondylar axis (SEA). We have developed “a superimposable Computed Tomography (CT) scan-based template”, in which the SEA is drawn on a distal femoral cross section of the CT image at the assumed bone resection level, to determine the precise SEA. Therefore, the objective of this study was to evaluate the accuracy of the rotational alignment of the femoral component positioned with the superimposed template in TKA. Patients and methods. Twenty-six consecutive TKA patients, including 4 females with bilateral TKAs were enrolled. To prepare a template, all knees received CT scans with a 2.5 mm slice thickness preoperatively. Serial three slices of the CT images, in which the medial epicondyle and/or lateral epicondyle were visible, were selected. Then, these images were merged into a single image onto which the SEA was drawn. Thereafter, another serial two CT images, which were taken at approximately 9 mm proximal from the femoral condyles, were also selected, and the earlier drawn SEA was traced onto each of these pictures. These pictures with the SEA were then printed out onto transparent sheets to be used as potential “templates” (Fig. 1-a). In the TKA, the distal femur was resected with the modified measured resection technique. Then, one template, whichever of the two potential templates, was closer to the actual shape, was selected and its SEA was duplicated onto the distal femoral surface (Fig. 1-b). Following that, the distal femur was resected parallel to this SEA. The rotational alignment of the femoral component was evaluated with CT scan postoperatively. For convention, an external rotation of the femoral component from the SEA was given a positive numerical value, and an internal rotation was given a negative numerical value. Results. The subjects were 4 knees in 4 males and 26 knees in 22 females. A mean age (for 30 knees) at the operation was 76.7 ± 6.1 years (range from 66.4 to 88.3). The posterior condylar angle was −0.27 ± 1.43, and the outlier, more than 3 degrees, was 1 case. Discussion. Conventionally, the SEA is palpated intraoperatively, however, the sulcus of the medial condyle sometimes cannot be identified precisely in osteoarthritic degeneration at the medial condyle. Also, the SEA is determined from the posterior condylar axis (PCA) by calculating the posterior condylar angle, which is between the SEA and the PCA, with the measurements from the preoperative CT scan. However, the residual cartilage thickness is not considered in this method, and thus, the SEA is possible to be inaccurate. The simple technology of our template allowed us to determine the SEA directly on the femoral surface, without any influence from bone degeneration. The femoral components could be implanted accurately, and therefore, the superimposed template was considered to improve TKA outcomes with the accurate SEA


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 59 - 59
1 Jan 2016
Tamaki M Tomita T Miyamoto T Iwamoto K Ueda T Sugamoto K
Full Access

Introduction. The deformity in osteoarthritis (OA) of the knee has been evaluated mainly in the frontal plane two dimensional X-ray using femorotibial angle. Although the presence of underlying rotational deformity in the varus knee and coexisting hip abnormality in the valgus knee have been suggested, three dimensional (3D) deformities in the varus and valgus knee were still unknown. We evaluated the 3D deformities of the varus and valgus knee using 3D bone models. Methods. Preoperative computed tomography (CT) scans of twenty seven OA knees (fifteen varus and twelve valgus) undergoing total knee arthroplasty were assessed in this study. CT scans of each patient's femur and tibia, with a 2 mm interval, obtained before surgery. We created the 3D digital model of the femur and tibia using visualization and modeling software developed in our institution. The femoral coordinate system was calculated by the 3D mechanical axis and clinical transepicondylar axis and the tibial coordinate system was calculated by the 3D mechanical axis and Akagi's line. The 3D deformities of the knee were determined by the relative position of the femorotibial coordinate system, and described by the tibial position relative to the femur. The anteversion of the femoral neck were calculated to evaluate the relationship between the valgus knee and hip region. Results. The 3D deformities of the varus knee were 12.1±5.5°varus (5.4 to 22.6°), 6.8±6.3°flexion (1.7 to 21.7°) and 6.5±6.1 °external rotation (−1.2 to 23.2°). The flexion and external rotational deformities were larger in knees with increased varus deformities. The 3D deformities of the valgus knee were 10.2±4.2°valgus (0.6 to 15.0°), 9.5±8.8°flexion (−5.2 to 23.7°) and 2.3±7.3°external rotation (−9.4 to 16.1°). Although there were no tendency about the 3D deformities in the valgus knee, the anteversion of the femoral neck in the valgus knees was 31.9°compared with 10.8°in the varus knees. Conclusion. The varus deformity in OA of the knee is associated with significant flexion and external rotational deformity. In contrast, the valgus deformity has a biomechanical background originating from the anteversion of the femoral neck


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_1 | Pages 94 - 94
1 Feb 2015
Minas T
Full Access

Historical studies in TKA suggest that 82–89% of patients are satisfied with TKA. Bourne et al. reviewed 1703 patients and reported that in newer designs that things have not improved much. Approximately one in five (19%) primary TKA patients were not satisfied with the outcome. Satisfaction with pain relief varied from 72–86% and with function from 70–84% for specific activities of daily living. The burden of OA is increasing in society and younger patients are undergoing TKA. A customised, individually made (CIM) knee arthroplasty (iTotal, ConforMIS Inc., Bedford, MA USA) has been introduced by individualising component geometry; exact sizing- medial – lateral and anterior–posterior, restoring medial and lateral joint lines, and restoring individual “J Curves” of the patients’ native femur as it was prior to the arthritic condition. This is done by preoperative CT scanning to include hip-knee-ankle and software to CAD-CAM manufacture of the individualised implants, with accompanying individualised cutting jigs. The hypothesis is to restore form and ultimately function. Will this lead to improved patient satisfaction?. Cadaveric comparison on an “Off The Shelf ” (OTS) implant to CIM implant in 9 matched pair analyses before and after TKA demonstrated that the CIM implant motion was not different than their preoperative kinematics of the knee but the OTS implant was. In vivo comparisons performed fluoroscopically of CIM implants versus OTS implants further demonstrated a more normal knee in terms of kinematics and stability in the CIM knee. Follow up of 110 consecutive patients undergoing a CIM CR TKA revealed patient satisfaction of 98%. Patient average age was 56.1 years old, average follow up 20 months. Two patients required revision- (both dissatisfied)- one for tibial subsidence 18 months after TKA (osteoporosis and obesity) the other developed global laxity at 9 months postoperatively. Both revised with stabilised PS OTS implants. At this early average follow up of <2 years it appears that patient satisfaction improves over prior OTS implant satisfaction with a CIM TKA that restores native size and geometry


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 79 - 79
1 May 2016
Feierabend S Lombardo D Morawa L Nasser S
Full Access

Introduction. Three-dimensional (3D) printing is a precise method of reproducing complex structures. Orthopaedic surgeons may utilize 3D imaging to better plan procedures, design implants, and communicate with other providers and patients. However, one of the limitations of 3D printed models has been the high cost associated with third-party creation of such tools. With the recent increases in the use of 3D printing many publically available software programs have been developed, which allow for inexpensive office-based production of models. We present a simple, inexpensive technique which can be used by surgeons for the rapid fabrication of 3D models in-office. Technique. CT scan and MRI's are stored in DICOM type format which must be transformed into a 3D image. This can be achieved using publically available programs (for example, 3D slicer (. http://www.slicer.org/. )). These images can be manipulated with this software, allowing for separation of individual bones. The files can then be exported from this program in an STL format. These models are then further enhanced and smoothed utilizing another open source software (Blender (. https://www.blender.org. )). The STL file can then be opened in a third open source program (for example, Meshlab . http://meshlab.sourceforge.net/. ) which can analyze the mesh for extra vertices, voids, and discontinuities. At this point the STL file is ready for 3D printing. The file can be loaded onto the slicer software for calculation of a tool path and printing. Case example 1. A 50 year old woman sustained a displaced acetabular fracture during primary total hip arthroplasty. She underwent fracture fixation, but her acetabular component failed to ingrow with bone. Multiple revision procedures were undertaken, but all were unsuccessful. She was finally referred for treatment. Preoperative CT scan showed massive bone loss and distortion of normal pelvic architecture (Figure 1) requiring a custom acetabular implant. A 3D model of the pelvis was produced with the custom implant to assist in preoperative planning (Figure 2a), but this was a costly and time consuming process. Therefore, a smaller scale pelvic model was also rapidly generated using the above technique in order to demonstrate the severity of the patient's pathology (Figure 2b). Case example 2. A 14 year old male presented with a history of knee pain, weakness and buckling over a decade. A CT scan was obtained which demonstrated a dislocated patella, loss of normal trochlea contour, and a concave patella. For demonstration purposes and patient education, the knee joint was 3D printed using the technique discussed above (Figure 3). Conclusion. This technique represents a simple, rapid, and inexpensive method for creation of 3D models. We believe this is a valuable tool in orthopaedic surgery in general and arthroplasty in particular as it can be used for preoperative planning as well as for facilitating communication between surgeons and patients. This technology can greatly increase the surgeon's ability to visualize anatomy, resulting in improved outcomes in difficult cases such as described here


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 21 - 21
1 Aug 2013
Kunz M Rudan J Mann S Twiss R Ellis R
Full Access

Introduction. Computer-assisted methods for acetabulum cup navigation have shown to be able to improve the accuracy of the procedure, but are time-consuming and difficult to use. The goal of this project was to develop an easy-to-use navigation technique, requiring minimal equipment for acetabular cup alignment. Material. A preoperative CT scan was obtained, a 3D model of the acetabulum was created, the pelvic plane determined and the cup orientation planned. A registration area, which included the accessible part of the acetabular fossa and the surrounding articular surface, was chosen for the individualised guide. A guidance cylinder, aligned along the planned cup orientation, was attached in the centre of the guide. To transfer the planned alignment information from the registered guide to the impacting of the cup, we developed an intraoperative guidance method based on inertia sensors. The sensors were aligned orthogonal to the central cylinder of the patient-specific guide and the orientation was recorded. At the time of impacting the cup, the sensors were attached to the impactor and the surgeon used the recorded information for the alignment of the impactor. Results. To measure the accuracy of the proposed registration method, we performed an in-vitro trial on three fresh-frozen hemipelves with seven participants. The deviation between the planned and registered inclination averaged 3.01° (StDev 5.7). In anteversion, we measured an average error of 4.33° (StDev 2.8). We tested the feasibility of the proposed method in a clinical trial. The postoperative radiographic measured angles in this trial were 45° anteversion (planned 45°) and 25° inclination (planned 20°). Discussion. We introduce a novel method for computer-assisted cup alignment, which is easy to integrate into the surgical workflow. Our preliminary results suggest that this method is accurate. However, further clinical studies are necessary to verify its clinical feasibility and accuracy


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 90 - 90
1 May 2016
Twiggs J Fritsch B Roe J Liu D Dickison D Theodore W Miles B
Full Access

Introduction. Total Knee Arthroplasty (TKA) is an established procedure for relieving patients of pain and functional degradation associated with end-stage osteoarthritis of the knee. Historically, alignment of components in TKA has focused on a ‘reconstructive’ approach neutral to the mechanical axes of the femur and tibia coupled with ligament balancing to achieve a balanced state. More recently, Howell et al. have proposed an alternate approach to TKA alignment, called kinematic alignment. (Howell, 2012) This approach seeks to position the implants to reproduce underlying, pre-disease state femoral condylar and tibial plateau morphology, and in doing is ‘restorative’ of the patients underlying knee kinematic behaviour rather than ‘reconstructive’. While some promising early clinical results have been reported at the RCT level (Dosset, 2014), in vivo comparisons of the kinematic outcome achieved at patient specific levels with the two alignment techniques remain an impossibility. The aim of this research is to develop and report preliminary findings of a means of simulating both alignment techniques on a number of patients. Method. In 20 TKR subjects, 3D geometry of the patient was reconstructed from preoperative CT scans, which were then used to define a patient specific soft tissue attachment model. The knees were then modelled passing through a 0 to 140 degree flexion cycle post TKR under each alignment technique. A multi-radius CR knee design has been used to model the TKA under each alignment paradigm. Kinematic measurements of femoral rollback, internal to external rotation, coronal plane joint torque, patella shear force and varus-valgus angulation are reported at 5, 30, 60, 90 and 120 degrees of flexion. Student's paired 2 sample t-tests are used to determine significant differences in means of the kinematic variables. Results. The mean femoral component alignment to the femoral mechanical axis was 3.3° ± 2.2° valgus and 2.3° ± 1.6° internal to the surgical transepicondylar axis in the kinematically aligned models. The mean tibial component alignment to the tibial mechanical axis was 3.5° ± 2.4° varus and 7.6° ± 6.5° internal to Insall's tibial anterior-posterior axis. The mechanically aligned model sims were all neutral to both axes. As a result of the relative match in femoral valgus & tibial varus component angulation, mean long leg varus at 5° degrees through 60° is not significantly different from the mechanically aligned knees, though with much higher variance in the kinematically aligned group. Statistically significant differences were observed at 90 and 120 degrees, where the long leg angle is dictated by posterior condylar contact on the femur rather than distal. Other statistically significant differences in mean results were observed, notably for coronal plain joint torque (at 5° and 30°, mechanical alignment higher). Discussion. Kinematic aligned TKR is conceptually a very different operation to mechanically aligned TKR, targeting different biomechanical goals. While evidence exists for improved clinical results in patients at a broad level, simulation tools at a patient specific level are a platform that, with development, could distinguish between patients benefiting most from a restorative or a reconstructive approach to their surgery


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 43 - 43
1 Oct 2012
Yan C Goulet B Chen S Tampieri D Collins D
Full Access

Image-guided spine surgery requires registration between the patient anatomy and the preoperative computed tomography (CT) image. We have previously developed an accurate and robust registration technique for this application by using intraoperative ultrasound to acquire patient anatomy and then registering the ultrasound images to the CT images by aligning the posterior vertebral surfaces extracted from both modalities. In this study, we validate our registration technique across 18 vertebrae on three porcine cadavers. We applied the ultrasound-registration technique on the thoracic and lumbar vertebrae of the porcine cadavers using both single sweeps and double orthogonal sweeps. For each sweep pattern at each vertebra, we also randomly simulated 100 different initial misalignments and registered each misalignment. The resulting registration transformations are compared to gold standard registrations to assess the accuracy and the robustness of the technique. Orthogonal-sweep acquisition was found to be the sweep-pattern that performed the best and yielded a registration accuracy of 1.65 mm across all vertebrae on all porcine cadavers. It was found that the target registration errors (TRE) stay relatively constant with increasing initial misalignment and that the majority (82.7%) of the registrations resulted in TREs below the clinically recommended 2 mm threshold. In addition, it was found that the registration accuracy varies by the sweep pattern and the vertebral level, but neighbouring vertebrae tend to result in statistically similar accuracy. We found that our ultrasound-CT registration technique yields clinically acceptable accuracy and robustness on multiple vertebrae across multiple porcine cadavers


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 86 - 86
1 Jan 2016
Kamara E Robinson J Hepinstall M Rodriguez J
Full Access

Introduction. Total hip arthroplasty is considered to be one of the most successful orthopaedic interventions. Acetabular component positioning has been shown to affect dislocation rates, component impingement, bearing surface wear rates, and need for revision surgery. The safe zones of acetabular component positioning have previously been described by Lewinnek et al. as 5 to 25 degrees of cup version and 30 to 50 degrees of inclination. Callanan et al. later modified the inclination to 30 to 45 degrees. Our aim was to assess whether THA via robotic assisted posterior approach (PA) improves acetabular component positioning compared to fluoroscopic guided anterior approach THA (AA). Methods. Subjects. This study is a matched-pair case-control study using prospectively collected data from THAs done between January 2012 and December 2013. Patients who underwent primary THA using the PA or AA by the senior surgeons (MH and JAR) were included in the study. Ninety-six patients (of 176; 55%) underwent AA and 80 (of 176; 45%) underwent PA THAs. The matching process was performed by an observer blinded to the radiographic outcomes (EK). Patients were matched for sex and BMI +− 8 units. Seventy-nine patients who had AAs were manually matched to 79 patients who had PAs. Surgical Techniques. For the AA THAs, the patient is supine and the approach is performed through a modified smith Peterson approach. Acetabular cup positioning is assessed intraoperatively with fluoroscopy. For the PA THAs, the patient in the lateral position using the posterior approach. Acetabular cup positioning was guided by the MAKO robotic hip system using preoperative CT scans of the involved hip. Radiographic Measurements. The radiographic measurements were done manually using a standardized technique by two observers blinded to the type of arthroplasty performed. Spearman's rank correlation coefficient was used to test user dependent variability. Means were used for final calculations. Statistical Analysis. The average cup inclination and anteversion angles were calculated. Calculation of the number of hips that were in the safe zones of Lewinnek (inclination, 30°–50°; anteversion, 5°–25°) and Callanan (inclination, 30°–45°; anteversion, 5°–25°) regarding inclination, anteversion, and a combination of both were done for both groups. Independent t-tests were performed to compare both groups for sex, BMI, and inclination and anteversion angles. Fisher's exact test was used to compare both groups regarding the number of hips in the safe zones of Lewinnek and Callanan. Relative risk and absolute risk reduction were calculated. Results. There was no significant difference in BMI between the two groups. Intraobserver agreement was found to be .92 and 0.82 for inclination and anteversion, respectively. Compared to fluoroscopic guided THAs, THAs performed with robot assistance were found to be more often in the safe zone of Lewinnek (90% vs. 75%, p=0.02, RR 0.40 [0.19–0.85] p=0.01). This pattern was observed in the zone of Callanan and approached statistical significance (80% vs. 68%, p=0.11, RR 0.64 [0.37–1.10] p=0.11). Conclusion. Compared to fluoroscopic assisted THA, robot assisted THAs are more likely to be within the safe zone of Callanan and Lewinnek


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 146 - 146
1 Dec 2013
Padgett DE Dounchis J Bragdon CR Elson L Malchau H
Full Access

Introduction:. Acetabular component orientation has been linked to hip stability as well as bearing mechanics such as wear. Previous studies have demonstrated wide variations of cup placement in hip arthroplasty using conventional implantation techniques which rely upon either anatomic landmarks or the use of commercial positioning guides. Enabling technologies such as navigation have been used to improve precision and accuracy. Newer technologies such as robotic guidance have been postulated to further improve accuracy. The goal of our study was to evaluate the clinical reproducibility of a consecutive series of haptically guided THR. Methods:. 119 patients at 4 centers were enrolled. All patients had preoperative CT scans for the purpose of planning cup placement in lateral opening and version using proprietary software (Mako, Ft. Lauderdale, FL). All procedures were performed using a posterolateral approach. Following bone registration, acetabular preparation and component position is performed using haptic guidance. Final implant postion is ascertained by obtaining 5 points about the rim of the acetabular component and recorded. At 6 weeks, all patients had AP and cross-table lateral radiographs which were then analyzed for cup abduction and anteversion using the Hip Analysis Suite software. The goal was to determine the variability between desired preoperative plan, intraoperative measurement and postoperative results. Results:. Of the 119 hips replaced, 9 hips were excluded due to problems using the Hip Suite software leaving 110 hips for analysis. As seen in Table 1., the mean cup inclination was planned for 40.0 degrees. Intraoperative recorded inclination was 39.9 degrees and using the Martell software, 40.4 degrees. Planned cup anteversion was 18.7 degrees, with intraoperative measurement of 18.6 degrees and postoperative Hip Suite analysis 21.5 degrees. There was no significant difference between any of these measurements. Conclusion:. The use of a haptically guided robot to prepare and implant an acetabular component during total hip arthroplasty is both precise and accurate based upon this multicentered study. While further research determining optimal cup position is needed, these results suggest that the ability to achieve desired position is possible utilizing this enabling technology


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 36 - 36
1 Oct 2012
Park I Yoon H Cheon S Seo S Cho H
Full Access

Recently, several preliminary reports have been issued on the application of computer assistance to bone tumour surgery. Surgical navigation systems can apply three-dimensional images such as CT and MR images to intraoperative visualization. Although CT is better at describing cortical bone status, MRI is considered the best method for defining the extent of marrow involvement for bone tumours and for planning surgical resection in bone tumour surgery. There have been a few reports on the application of MR imaging to navigation-assisted bone tumour surgery through CT–MR image fusion. However, the CT–MRI fusion technique requires additional costs and exposure of the patient to radiation from the preoperative CT, as well as additional time for image fusion. Above all, the image fusion process is a kind of registration (image to image registration) that inevitably leads to registration error. Herein we describe a new method for the direct application of MR images to navigation-assisted bone tumour surgery as an alternative to CT–MRI fusion. Six patients with an orthopaedic malignancy were employed for this method during navigation-assisted tumour resection. Resorbable pin placement and rapid 3-dimensional spoiled gradient echo sequences made the direct application of MR images to computer-assisted bone tumour surgery without CT–MR image fusion possible. A paired-point registration technique was employed for patient-image registration in all patients. It took 20 min on average to set up the navigation (range 15 to 25 minutes). The mean registration error was 0.98 mm (range 0.4 to 1.7 mm). On histologic examination, distances from tumours to resection margins were in accord with preoperative plans. Mean duration of follow-up was 25.8 months (range 18 to 32 months). No patient had a local recurrence or distant metastasis at the last follow-up. Direct patient-to-MRI registration is a very useful method for bone tumour surgery, permitting the application of MR images to intraoperative visualization without any additional costs or exposure of the patient to radiation from the preoperative CT scan