Contemporary PCL sacrificing Total Knee Arthroplasty (TKA) implants (CS) consist of symmetric medial and lateral tibial articular surfaces with high anterior lips designed to substitute for the stability of the native PCL. However, designs vary significantly across implant systems in the level of anteroposterior constraint provided. Therefore, the goal of this study was to investigate kinematics of two CS designs with substantially different constraint levels. The hypothesis was that dynamic knee simulations could show the effect of implant constraint on kinematics of CS implants. LifeModeler KneeSIM software was used to analyze contemporary CS TKA (X) with a symmetric and highly dished tibia and contemporary CS TKA (Y) with a symmetric tibia having flat sections bounded by high anterior and posterior lips, during simulated deep knee bend and chair sit. The flat sections of CS-Y implant are designed to allow freedom prior to motion restriction by the implant lips. Components were mounted on an average knee model created from Magnetic Resonance Imaging (MRI) data of 40 normal knees. Relevant ligament/tendon insertions were obtained from the MRI based 3D models and tissue properties were based on literature values. The condyle center motions relative to the tibia were used to compare the different implant designs. In vivo knee kinematics of healthy subjects from published literature was used for reference.INTRODUCTION
METHODS
The posterior drawer is a commonly used test to diagnose an isolated PCL injury and combined PCL and PLC injury. Our aim was to analyse the effect of tibial internal and external rotation during the posterior drawer in isolated PCL and combined PCL and PLC deficient cadaver knee. Ten fresh frozen and overnight-thawed cadaver knees with an average age of 76 years and without any signs of previous knee injury were used. A custom made wooden rig with electromagnetic tracking system was used to measure the knee kinematics. Each knee was tested with posterior and anterior drawer forces of 80N and posterior drawer with simultaneous external or internal rotational torque of 5Nm. Each knee was tested in intact condition, after PCL resection and after PLC (lateral collateral ligament and popliteus tendon) resection. Intact condition of each knees served as its own control. One-tailed paired student's t test with Bonferroni correction was used. The posterior tibial displacement in a PCL deficient knee when a simultaneous external rotation torque was applied during posterior drawer at 90° flexion was not significantly different from the posterior tibial displacement with 80N posterior drawer in intact knee (p=0.22). In a PCL deficient knee posterior tibial displacement with simultaneous internal rotation torque and posterior drawer at 90° flexion was not significantly different from tibial displacement with isolated posterior drawer. In PCL and PLC deficient knee at extension with simultaneous internal rotational torque and posterior drawer force the posterior tibial displacement was not significantly different from an isolated PCL deficient condition (p=0.54). We conclude that posterior drawer in an isolated PCL deficient knee could result in negative test if tibia is held in external rotation. During a recurvatum test for PCL and PLC deficient knee, tibial internal rotation in extension results in reduced posterior laxity.
In performing posterior cruciate ligament- retaining total knee arthroplasty (CR-TKA), the original surgical instrument was devised to obtain the range of motion and stability of the knee joint adequate for daily life of Japanese people. We have presumed the tentative joint line as intercondylar notch point of the distal femur, and performed surgery using surface replacement to resect metal width of the femoral component for the distal femur by setting the knee to the original position based on understanding of the shape of anterior curvature of the distal femur in Japanese people in case of implanting the femoral component. In order to obtain stability of the knee, we have minimally released the soft tissue and resected the anterior cruciate ligament (ACL), whereas completely preserved the
INTRODUCTION. Over the past 40 years of knee arthroplasty, significant advances have been made in the design of knee implants, resulting in high patient satisfaction. Patellar tracking has been central to improving the patient experience, with modern designs including an optimized Q-angle, deepened trochlear groove, and thin anterior flange.[1–4] Though many of today's femoral components are specific for the left and right sides, Total Joint Orthopedics’ (TJO) Klassic® Knee System features a universal design to achieve operating room efficiencies while providing all the advancements of a modern knee. The Klassic Femur achieves this through a patented double Q-angle to provide excellent patellar tracking whether implanted in the left or the right knee (Figure 1). The present study examines a prospective cohort of 145 consecutive TKA's performed using a modern universal femur and considers patients’ pre- and post-operative Knee Society Clinical Rating System score (KSS). METHODS AND MATERIALS. 145 primary total knee arthroplasties (TKA) were performed during the study using a measured resection technique with a slope-matching tibial cut for all patients. The
Patient expectations have escalated over the past several decades with respect to demand for success with total knee arthroplasty (TKA). It is reported that 15 to 20% of TKA recipients are unsatisfied with their result. Dynamic fluoroscopic studies and gait analyses have demonstrated that patients with TKA do not exhibit normal kinematics. On the other hand, patients with partial knee arthroplasty demonstrate more normal kinematics, thought to be secondary to retention of the anterior cruciate ligament (ACL) along with the
One of the key factors responsible for altered kinematics and joint stability following contemporary total knee arthroplasty (TKA) is resection of the anterior cruciate ligament (ACL). Therefore, retaining the ACL is often considered to be the “holy grail” of TKA. However, ACL retention can present several technical challenges, and in some cases may not be viable due to an absent or non-functional ACL. Therefore, the goal of this research was to investigate whether substitution of ACL function through an anterior post mechanism could improve kinematic deficits of contemporary
Introduction. Ligament reconstruction following knee soft tissue injuries, such as
Introduction. In total knee arthroplasty (TKA) the knee may be found to be too stiff in extension, causing a flexion contracture. One proposed surgical technique to correct this extension deficit is to recut the distal femur, but that may lead to excessively raising the joint line. Alternatively, full extension may be gained by stripping the posterior capsule from its femoral attachment, however if this release has an adverse impact on anterior-posterior (AP) stability of the implanted knee then it may be advisable to avoid this technique. The aim of the study was therefore to investigate the effect of posterior capsular release on AP stability in TKA, and compare this to the restraint from the cruciate ligaments and different TKA inserts. Methods. Eight cadaveric knees were mounted in a six degree of freedom testing rig (Fig.1) and tested at 0°, 30°, 60° and 90° flexion with ±150 N AP force, with and without a 710 N axial compressive load. The rig allowed an AP drawer to be applied to the tibia at a fixed angle of flexion, whilst the other degrees-of-freedom were unconstrained and free to translate/ rotate. After the native knee was tested with and without the anterior cruciate ligament (ACL), a cruciate-retaining TKA (Legion; Smith & Nephew) was implanted and the tests repeated. The following stages were then performed: replacing with a deep dished insert, cutting the
Background. To prevent excessive tension on the
Introduction. There is little information available to surgeons regarding how the lateral soft-tissue structures prevent instability in knees implanted with total knee arthroplasty (TKA). The aim of this study was to quantify the lateral soft-tissue contributions to stability following cruciate retaining (CR) TKA. Methods. Nine cadaveric knees with CR TKA implants (PFC Sigma; DePuy Synthes Joint Reconstruction) were tested in a robotic system (Fig. 1) at full extension, 30°, 60°, and 90° flexion angles. ±90 N anterior-posterior force, ±8 Nm varus-valgus and ±5 Nm internal-external torque were applied at each flexion angle. The anterolateral structures (ALS, including the iliotibial band, anterolateral ligament and anterolateral capsule), the lateral collateral ligament (LCL), the popliteus tendon complex (Pop T) and the
It is a well-known fact that total knee arthroplasty is a soft tissue operation. Soft tissue balancing is the key to success in total knee arthroplasty. It is paramount importance to preserve the maximal amount of bone on both the femur and tibial side. In Indian scenario, majority of the patients present relatively late with varus or valgus deformity. Adding to this problem is poor bone quality due to osteoporosis. Our technique of
PURPOSE. Total knee arthroplasty (TKA) is a successful technique for treating painful osteoarthritic knees. However, the patients' satisfaction is not still comparable with total hip arthroplasty. Basically, the conditions with operated joints were anterior cruciate ligament (ACL) deficient knees, thus, the abnormal kinematics is one of the main reason for the patients' incomplete satisfaction. Bi-cruciate stabilized (BCS) TKA was established to reproduce both ACL and
Introduction. The purpose of this study was to determine whether the patient's perceived outcome and speed of recovery differs between a
Lubricin is a proteoglycan that is a boundary lubricant in synovial joints and both a surface and collagen inter-fascicular lubricant in ligaments. The purpose of this study was to characterise the mRNA levels for lubricin in the anterior cruciate ligament (ACL),
The posterior tibial slope angle (PTS) in posterior cruciate retaining total knee arthroplasty influences the knee kinematics, knee stability, flexion gap, knee range of motion (ROM) and the tension of the
Introduction. Measuring the step off during total knee replacement (TKR) is a newly developed operative strategy (“spacer technique”; Heesterbeek et al, KSSTA 2014;22(3):650–9) to determine the optimal contact point (CP) of the femur with the tibia postoperative and to balance the
OBJECTIVE. The purpose of this study was to investigate the postoperative change of hematological values between post cam type posterior stabilized (PS) and deep dish cruciate substituting (CS) type total knee arthroplasty (TKA). MATERIALS AND METHODS. From June 1999 to December 2013, 322 patients with TKA due to osteoarthritis or rheumatoid arthritis were enrolled. In all knees,
Background. Total knee arthroplasty (TKA) is the highly developed procedure for sever osteoarthritic knee, in which there are two major concepts; Cruciate Retaining design (CR) and Posterior Stabilized design (PS). The femoral roll back movement is enforced with the post-cam mechanism in the PS, however, this structure associates with the complications, i.e. wear and dislocation. The CR has been developed to obtain the knee stability with native
Introduction. Compared with the cruciate-retaining (CR) insert for total knee arthroplasty (TKA), the cruciate-substituting (CS) insert has a raised anterior lip, providing greater anterior constraint, and thus, can be used in cases of
INTRODUCTION. Although several meta-analyses have been performed on total knee arthroplasty (TKA) using computer-assisted orthopaedic surgery (CAOS) [1], understanding the inter-site variations of the surgical profiles may improve the interpretation of the results. Moreover, information on the global variations of how TKA is performed may benefit the development of CAOS systems that can better address geographic-specific operative needs. With increased application of CAOS [2], surgeon preferences collected globally offers unprecedented opportunity to advance geographic-specific knowledge in TKA. The purpose of this study was to investigate geographic variations in the application of a contemporary CAOS system in TKA. Materials and Methods. Technical records on more than 4000 CAOS TKAs (ExactechGPS, Blue-Ortho, Grenoble, FR) between October 2012 and January 2016 were retrospectively reviewed. A total of 682 personalized surgical profiles, set up based on surgeon's preferences, were reviewed. These profiles encompass an extensive set of surgical parameters including the number of steps to be navigated, the sequence of the surgical steps, the definition of the anatomical references, and the parameters associated with the targeted cuts. The profiles were compared between four geographic regions: United States (US), Europe (EU), Asia (AS), and Australia (AU) for cruciate-retaining (CR) and posterior-stabilized (PS) designs. Clinically relevant statistical differences (CRSD, defined as significant differences in means ≥1°/mm) were identified (significance defined as p<0.05). Results. For resection parameters, CRSDs were found between regions in posterior tibial slope (PTS), tibial resection depth, as well as femoral flexion for both CR and PS profiles (marked in Table 1). Regarding anatomical references, US was the only region using