Aim. Biofilm-related infections represent a recurrent problem in the orthopaedic setting. In recent years, great interest was directed towards the identification of novel molecules capable to interfere with pathogens adhesion and biofilm formation on implant surfaces. In this study, two stable forms of α-tocopherol, the hydrophobic acetate ester and the water-soluble
Introduction. Osteoporotic intertrochanteric fracture (ITF) is frequent injuries affecting elderly, osteoporotic patients leading to significant morbidity and mortality. Successful prognosis including union and alignment is challenging even though initial successful reduction with internal fixation. Although many factors are related to the patient's final prognosis. Well reduction with stable fracture fixation is still the goal of treatment to improve the quality of life and decrease morbidity in patients with hip fractures, but this in turn depends on the type of fracture and bone quality. Poor bone quality is responsible for common complications, such as failure of fixation, varus collapse and lag screw cut-out, in elderly patients. Kim et al. found that the complication rate when using conventional DHS in unstable ITFs can be as high as 50% because of screw cut-out. We used the dynamic hip screws (DHS) strengthened by calcium
Aim. Chronic osteomyelitis often requires surgical debridement and local antibiotic treatment. Disadvantages of PMMA carriers include low dose release and the requirement of surgical removal in the case of PMMA-beads. Synthetic nanocrystalline calcium
Background. Calcium
Introduction. The ability of activated platelets to induce cellular proliferation is well recognised. In a previous diffusion model, platelets combined with Tri-calcium
Aim. To evaluate the bacterial counts of sonicatied implants in patients with osteoarticular infections. Various studies have demostrated the usefulness of sonication of retrieved implants in order to provide an accurate microbiological diagnosis. Although cutoff values for original sonicate counts have been established, the use of centrifugation may influence these values. Method. A retrospective, single-center study, including sonication fluid samples from implants removed between January 2011 and October 2023, was performed. Patients were diagnosed with implant-associated infection based on the criteria available at the time of diagnosis. Osteoarticular implants were sonicated following the protocol described by Esteban et al. Sonicated fluid was centrifuged for 20 minutes at 3000 x g, and the sediment was resuspended in 5 mL of
Abstract. Background. The aim of the present experimental study was to analyse vancomycin elution kinetics of nine bone fillers used in orthopaedic and trauma surgery over 42 consecutive days. Methods. Two allograft bone chips (carriers 1 and 2), a calcium-sulfate matrix (carrier 3), a hydroxyapatite/calcium-sulphate composite (carrier 4), four bone cements (carriers 5-8) and a pure tricalcium
A novel injectable hydrogel based on DNA and silicate nanodisks was fabricated and optimized to obtain a suitable drug delivery platform for biomedical applications. Precisely, the hydrogel was designed by combining two different type of networks: a first network (type A) made of interconnections between neighboring DNA strands and a second one (type B) consisting of electrostatic interactions between the silicate nanodisks and the DNA backbone. The silicate nanodisks were introduced to increase the viscosity of the DNA physical hydrogel and improve their shear-thinning properties. Additionally, the silicate nanodisks were selected to modulate the release capability of the designed network. DNA 4% solutions were heated at 90°C for 45 seconds and cooled down at 37°C degree for two hours. In the second step, the silicate nanodisks suspension in water at different concentrations (0.1 up to 0.5%) were then mixed with the pre-gel DNA hydrogels to obtain the nanocomposite hydrogels. Rheological studies were carried out to investigate the shear thinning properties of the hydrogels. Additionally, the hydrogels were characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron microscopy. The hydrogels were loaded with the osteoinductive drug dexamethasone and its release was tested in vitro in
Acrylic bone cements are used rather extensively in orthopedic and spinal applications. The incorporation of calcium
Aim. The preparation of antibiotic-containing polymethyl methacrylate (PMMA), as spacers generates a high polymerization heat, which may affect their antibiotic activity; it is desirable to use bone cement with a low polymerization heat. Calcium
Bone is a dynamic organ with remarkable regenerative properties seen only otherwise in the liver. However, bone healing requires vascularity, stability, growth factors, a matrix for growth, and viable cells to obtain effective osteosynthesis. We rely on these principles not only to heal fractures, but also achieve healing of benign bone defects. Unfortunately we are regularly confronted with situations where the local environment and tissue is insufficient and we must rely on our “biologic tool box.” When the process of bone repair requires additional assistance, we often look to bone grafting to provide an osteoconductive, osteoinductive, and/or osteogenic environment to promote bone healing and repair. The primary workhorses of bone grafting include autogenous bone, cadaver allograft, and bone graft substitutes. Among the first types of bone graft used and still used in large quantities today include autogenous and cadaver allograft bone. Allografts are useful because it is present in multiple forms that conform to the desired situation. But autogenous bone graft is considered the gold standard because it possesses all the fundamental properties to heal bone. However, it has been associated with high rates of donor site morbidity and typically requires an inpatient hospitalization following the procedure only adding to the associated costs. The first bone graft substitute use was calcium sulfate in 1892, and over the past 122 years advancements have achieved improved material properties of calcium sulfate and helped usher in additional bioceramics for bone grafting. Today there are predominantly four types of bioceramics available, which include calcium sulfate, calcium
Summary. We report the first use of synchrotron xray spectroscopy to characterize and compare the chemical form and distribution of metals found in tissues surrounding patients with metal-on-metal hip replacements that failed with (Ultima hips) or without (current generation, large diameter hips) corrosion. Introduction. The commonest clinical category of failure of metal-on-metal (MOM) hip replacements is “unexplained” and commonly involved a soft tissue inflammatory response. The mechanism of failure of the Ultima MOM total hip replacement includes severe corrosion of the metal stem and was severe enough to be removed from clinical use. Corrosion is not a feature that we have found in the currently used MOM bearings. To better understand the biological response to MOM wear debris we hypothesized that tissue from failed hips with implant corrosion contained a different type of metal species when compared to those without corrosion. Method. Tissue from patients with two types of MOM hip arthroplasty were analysed: Ultima that failed with severely corroded femoral stems (n=12); and large diameter, current generation MOM hips that failed without visible corrosion (n=7). Comparison was also made to samples of cobalt, chromium and molybedanum standards. We used a high energy synchrotron xray beam to map and characterise the type of metal within the tissues. This enabled us to analyse the type of chemical in a situation that is as realistic as possible: without staining; without the use of a vacuum; and the use of fresh frozen tissue sections with metals at relatively low concentrations. This could not have been achieved without a synchrotron. Results. Comparison with standards revealed the chemical form of the chromium in the tissues surrounding metal-on-metal hip replacements was chromium (III). This was similar for both corroded (Ultima MOM) and non-corroded (large diameter, current generation MOM) hips. This was chromium (III)
Bone is a dynamic organ with remarkable regenerative properties seen only otherwise in the liver. However, bone healing requires vascularity, stability, growth factors, a matrix for growth, and viable cells to obtain effective osteosynthesis. We rely on these principles not only to heal fractures, but also achieve healing of benign bone defects. Unfortunately, we are regularly confronted with situations where the local environment and tissue is insufficient and we must rely on our “biologic tool box.” When the process of bone repair requires additional assistance, we often look to bone grafting to provide an osteoconductive, osteoinductive, and/or osteogenic environment to promote bone healing and repair. The primary workhorses of bone grafting includes autogenous bone, cadaver allograft, and bone graft substitutes. Among the first types of bone graft used and still used in large quantities today include autogenous and cadaver allograft bone. Allografts are useful because it is present in multiple forms that conform to the desired situation. But autogenous bone graft is considered the gold standard because it possesses all the fundamental properties to heal bone. However, it has been associated with high rates of donor site morbidity and typically requires an inpatient hospitalization following the procedure only adding to the associated costs. The first bone graft substitute use was calcium sulfate in 1892, and over the past 122 years advancements have achieved improved material properties of calcium sulfate and helped usher in additional bioceramics for bone grafting. Today there are predominantly 4 types of bioceramics available, which include calcium sulfate, calcium
The progressive kyphosis and pain in patients with acute thoracolumbar burst fractures treated conservatively so as the recurrent kyphosis after posterior reduction and fixation were associated to disc collapse rather than vertebral body compression. It depends on redistribution of the disc tissue in the changed morphology of the space after fractures of the endplate. The aim of this study is to evaluate the safety and the efficacy of balloon kyphoplasty with calcium
Introduction. Since the introduction of modular hip taper junctions, corrosion has been studied yet the clinical effect remains unclear. Mechanically assisted corrosion and crevice corrosion are thought to be the primary clinical processes driving taper corrosion. Like all corrosion reactions, these processes require the taper junction to be in contact with an electrolyte. This study investigates the effect of sealing the taper junction from the environment on the mechanically-induced corrosion of a modular hip taper junction. Methods. A short-term corrosion fatigue test was conducted with Ti6Al4V 12/14 taper coupons coupled with CoCrMo 12/14 taper 28mm+12 heads (DePuy Synthes, Warsaw, IN). Ten specimens were assembled with a 1.1 kN press load and sealed with silicone sealant (Dow-Corning 732 Multi-Purpose Sealant). Prior to assembly five of these specimens were assembled with the taper junction having been wetted with
Aim. To evaluate bacterial adhesion and biofilm formation to metallic cerclage wire versus polymer cerclage system (SuperCable®). Methods. Experimental in vitro study to evaluate quantitative bacterial adherence to different cerclage wire materials. Two types of cerclage wires were compared: a metallic versus a polymer based wire (SuperCable®). A two-centimeter cerclage wire piece of each material was included in 2 mL of tryptic soy broth (TSB) culture media, inoculated with 10 microliters of a 0.5 McFarland of a Staphylococcus epidermidis strain and cultivated at 37°C during 2h for adhesion and 48h for biofilm formation. After this time, the cerclages were washed using a 1%
The purpose of this study was to quantify tibial tunnel enlargement at 3-, 6- and 12-months post-anterior cruciate ligament reconstruction (ACLR), and evaluate the magnitude of tunnel widening with use of a Poly (L-lactic Acid) interference screw (PLLA (Bioscrew XtraLok, Conmed, New York)) compared to a Poly (L-lactic Acid) + tricalcium
Joint hemiarthroplasty replaces one side of a synovial joint and is a viable alternative to total joint arthroplasty when one side of the joint remains healthy. Most hemiarthroplasty implants used in current clinical practice are made from stiff materials such as cobalt chrome or ceramic. The substitution of one side of a soft cartilage-on-cartilage articulation with a rigid implant often leads to damage of the opposing articular cartilage due to the resulting reductions in contact area and increases in cartilage stress. The improvement of post-operative hemiarthroplasty articular contact mechanics is of importance in advancing the performance and longevity of hemiarthroplasty. The purpose of the present study was to investigate the effect of hemiarthroplasty surface compliance on early in-vitro cartilage wear and joint contact mechanics. Cartilage wear tests were conducted using a six-station pin-on-plate apparatus. Pins were manufactured to have a hemispherical radius of curvature of 4.7 mm using either Bionate (DSM Biomedical) having varying compliances (80A [E=20MPa], 55D [E=35MPa], 75D [E=222MPa], n=6 for each), or ceramic (E=310GPa, n=5). Cartilage plugs were cored from fresh unfrozen bovine knee joints using a 20 mm hole saw and mounted in lubricant-containing chambers, with alpha calf serum diluted with
As the intervertebral disc is largely avascular, needle injection is the most practical method for delivery of therapeutic agents used in treatments for degenerative disc disease. Intradiscal pressure increases during injection, and insufficient recovery time prior to needle retraction may result in injectate leakage. In order to determine the maximum pressure and post-injection recovery time for a given injection volume and rate, an analytical model of intradiscal injection was developed and calibrated experimentally. A governing equation was derived defining intradiscal pressure as a function of effective permeability, initial elastic stiffness, nonlinear stiffness term, and injection rate. The equation was solved using a fourth order Runge-Kutta routine with a 0.05s time step and a ramp-dwell injection. The model was calibrated by performing controlled intradiscal injections on five bovine caudal intervertebral discs. Three had adjacent vertebrae intact, while two were separated from vertebrae and constrained between porous stainless steel platens. A syringe driven by a linear actuator was used to inject
Bone is a dynamic organ with remarkable regenerative properties seen only otherwise in the liver. However, bone healing requires vascularity, stability, growth factors, a matrix for growth, and viable cells to obtain effective osteosynthesis. We rely on these principles not only to heal fractures, but also achieve healing of benign bone defects. Unfortunately we are regularly confronted with situations where the local environment and tissue is insufficient and we must rely on our “biologic tool box.” When the process of bone repair requires additional assistance, we often look to bone grafting to provide an osteoconductive, osteoinductive, and/or osteogenic environment to promote bone healing and repair. The primary workhorses of bone grafting include autogenous bone, cadaver allograft, and bone graft substitutes. Among the first types of bone graft used and still used in large quantities today include autogenous and cadaver allograft bone. Allografts are useful because it is present in multiple forms that conform to the desired situation. But autogenous bone graft is considered the gold standard because it possesses all the fundamental properties to heal bone. However, it has been associated with high rates of donor site morbidity and typically requires an inpatient hospitalization following the procedure only adding to the associated costs. The first bone graft substitute use was calcium sulfate in 1892, and over the past 122 years advancements have achieved improved material properties of calcium sulfate and helped usher in additional bioceramics for bone grafting. Today there are predominantly 4 types of bioceramics available, which include calcium sulfate, calcium