Advertisement for orthosearch.org.uk
Results 1 - 20 of 384
Results per page:
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 94 - 94
1 Dec 2022
Lazarides A Novak R Burke Z Gundavda M Ghert M Rose P Houdek M Wunder JS Ferguson P Griffin A Tsoi K
Full Access

Radiation induced sarcoma of bone is a rare but challenging disease process associated with a poor prognosis. To date, series are limited by small patient numbers; data to inform prognosis and the optimal management for these patients is needed. We hypothesized that patients with radiation-induced pelvic bone sarcomas would have worse surgical, oncologic, and functional outcomes than patients diagnosed with primary pelvic bone sarcomas. This was a multi-institution, comparative cohort analysis. A retrospective chart review was performed of all patients diagnosed with a radiation-induced pelvic and sacral bone sarcoma between January 1st, 1985 and January 1st, 2020 (defined as a histologically confirmed bone sarcoma of the pelvis in a previously irradiated field with a minimum 3-year interval between radiation and sarcoma diagnosis). We also identified a comparison group including all patients diagnosed with a primary pelvic osteosarcoma/spindle cell sarcoma of bone (i.e. eligible for osteosarcoma-type chemotherapy) during the same time interval. The primary outcome measure was disease-free and overall survival. We identified 85 patients with primary osteosarcoma of the pelvis (POP) and 39 patients with confirmed radiation induced sarcoma of the bony pelvis (RISB) undergoing surgical resection. Patients with RISB were older than patients with POP (50.5 years vs. 36.5 years, p67.7% of patients with POP underwent limb salvage as compared to 77% of patients with RISB; the type of surgery was not different between groups (p=.0.24). There was no difference in the rate of margin positive surgery for RISB vs. POP (21.1% vs. 14.1%, p=0.16). For patients undergoing surgical resection, the rate of surgical complications was high, with more RISB patients experiencing complications (79.5%) than POP patients (64.7%); this approached statistical significance (p=0.09). 15.4% of patients with RISB died perioperative period (within 90 days of surgery) as compared to 3.5% of patients with POP (p= 0.02). For patients undergoing surgical resection, 5-year OS was significantly worse for patients with RISB vs. POP (27.3% vs. 47.7%, p=0.02). When considering only patients without metastatic disease at presentation, a significant difference in 5-year survival remains for patients with RISB vs. POP (28.6% vs. 50%, p=0.03) was a trend towards poorer 5-year DFS for patients with RISB vs. POP (30% vs. 47.5%), though this did not achieve statistical significance (p=0.09). POP and RISB represent challenging disease processes and the oncologic outcomes are similarly poor between the two; however, the disease course for patients with RISB appears to be worse overall. While surgery can result in a favorable outcome for a small subset of patients, surgical treatment is fraught with complications


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 69 - 69
1 Apr 2019
Shallenberg A
Full Access

Aims. The aim of this study was to optimize screw hole placement in an acetabulum cup implant to improve secondary initial fixation by identifying the region of thickest acetabulum bone. The “scratch fit” of modern acetabular cup implants with highly porous coatings is often adequate for initial fixation in primary total hip arthroplasty. Initial fixation must limit micromotion to acceptable levels to facilitate osseointegration and long term cup stability. Secondary initial fixation can be required in cases with poor bone quality or bone loss and is commonly achieved with bone screws and a cup implant with multiple screw holes. To provide maximum secondary initial fixation, the cup screw holes should be positioned to allow access to the limited region of thick pelvic bone. Patients and Methods. Through a partnership with Materialise, a statistical shape model of the pelvis was created utilizing 80 CT scans (36 female, 44 male). To limit the effect of variation outside the area of cup implant fixation, the shape model includes only the inferior pelvis (cut off at the greater sciatic notch and above the anterior inferior iliac spine). A virtual implantation protocol was developed which creates instances of the pelvis shape model that accurately simulate the intraoperative reaming of the acetabulum to accept the cup implant. First a sphere is best fit to the native acetabulum and the diameter is rounded to the nearest whole millimeter. The diameter of the best fit sphere is increased by 1mm to simulate bone removal during the spherical reaming procedure. The sphere is translated medially and superiorly such that it is tangent to the teardrop and removes 2mm of superior acetabulum. The sphere is used to perform a Boolean subtraction from the shape model to create a virtually reamed pelvis shape model. The Materialise 3-Matic software was used to perform a thickness analysis of the prepared shape models. The output of the thickness analysis is displayed as a color “heat map” where green represents thin bone and red is thick bone. The region of thickest bone was identified and used to drive ideal screw hole placement in the cup implant to access this region. Results. The analysis finds there is a limited arc of thick bone in the acetabulum that begins superiorly and extends posterior-inferior that accounts for only about 15% of total reamed surface area. Maximum screw purchase is provided when screw holes in the cup implant are placed over this limited region of thick bone. The thickest bone, located superiorly, facilitates the placement of a long bone screw up the iliac column and the posterior-inferior region of thick bone facilitates the placement of additional posterior screws. Conclusion. The shape model development, virtual implantation protocol, and heat map thickness analysis allowed the placement of bone screw holes directly over the limited region of thick pelvic bone. This allows maximum screw purchase which is important in achieving adequate secondary initial fixation with bone screws. Disclaimer. Author is an engineer employed by DJO Surgical who funded this study


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 94 - 94
1 May 2019
Nam D
Full Access

Postoperative dislocation following total hip arthroplasty (THA) remains a significant concern with a reported incidence of 1% to 10%. The risk of dislocation is multifactorial and includes both surgeon-related (i.e. implant position, component size, surgical approach) and patient-related factors (i.e. gender, age, preoperative diagnosis, neurologic disorders). While the majority of prior investigations have focused on the importance of acetabular component positioning, recent studies have shown that approximately 60% of “dislocators” following primary THA have an acceptably aligned acetabular component. Therefore, the importance of the relationship between the spine and pelvis, and its impact on functional component position has gained increased attention. Kanawade and Dorr et al. have shown patients can be categorised into having a stiff, normal, or hypermobile pelvis based on their change in pelvic tilt when moving from the standing to seated position. The degree of change in functional position of both the acetabular and femoral components is impacted by the degree of pelvic motion each patient possesses. In the “normal” pelvis, as a patient moves from the standing to seated position the pelvis typically tilts posteriorly, thus increasing the functional anteversion of the acetabular component. However, patients with lumbar degeneration or spine pathology often have a decrease in posterior pelvic tilt in the seated position, thus potentially increasing their risk of dislocation. Bedard et al. noted an 8.3% dislocation risk in patients with a spinopelvic fusion after THA vs. 2.9% in those without. There is the potential that preoperative, dynamic imaging can be used to predict the ideal component position for each individual patient undergoing THA. However, this assumes that a patient's preoperative pelvic motion will be the same following implantation of a total hip prosthesis, and that a patient's pelvic motion will remain consistent over time postoperatively. A recent study has shown that the impact of THA on pelvic motion can be highly variable, thus potentially limiting the utility of preoperative dynamic imaging in predicting a patient's ideal component position. Future investigations must focus on preoperative factors that can be used to predict postoperative pelvic motion and how pelvic motion changes over time following implantation of a total hip arthroplasty


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 11 | Pages 1508 - 1512
1 Nov 2006
Wimsey S Pickard R Shaw G

Magnification of anteroposterior radiographs of the pelvis is variable. To improve the accuracy of templating, reliable and radiographer-friendly methods of scaling are necessary. We assessed two methods of scaling digital radiographs of the pelvis: placing a coin of known diameter in the plane of interest between the patient’s thighs, and using a caliper to measure the bony width of the pelvis. A total of 39 patients who had recently undergone hemiarthroplasty of the hip or total hip replacement were enrolled in the study. The accuracy of the methods was assessed by comparing the actual diameter of the head of the prosthesis with the measured on-screen value. The coin method was within a mean of 1.12% (0% to 2.38%) of the actual measurement, the caliper group within 6.99% (0% to 16.67%). The coin method was significantly more accurate (p < 0.001). It was also reliable and radiographer friendly. We recommend it as the method of choice for scaling radiographs of the pelvis before hip surgery


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 46 - 46
1 Apr 2019
Kim YW Girinon F Lazennec JY Skalli W
Full Access

Introduction. Stand to sit pelvis kinematics is commonly considered as a rotation around the bicoxofemoral axis. However, abnormal kinematics could occur for patients with musculoskeletal disorders affecting the hip-spine complex. The aim of this study is to perform a quantitative analysis of the stand to sit pelvis kinematics using 3D reconstruction from bi-planar x-rays. Materials and Methods. Thirty healthy volunteers as a control group (C), 30 patients with hip pathology (Hip) and 30 patients with spine pathology (Spine) were evaluated. All subjects underwent standing and sitting full-body bi-planar x-rays. 3D reconstruction was performed in each configuration and then translated such as the middle of the line joining the center of each acetabulum corresponds to the origin. Rigid registration quantified the finite helical axis (FHA) describing the transition between standing and sitting with two specific parameters. The orientation angle (OA) is the signed 3D angle between FHA and bicoxofemoral axis and the rotation angle (RA) represents the signed angle around FHA. Pelvic incidence, sacral slope and pelvic tilt were also measured. After checking normality of distribution, parameters were compared statistically between the 3 groups (p<0.05). Results. The mean value of the orientation angle in control group was −1.8° (SD 10.8°, range −26° to 25°). The mean value of the OA was 0.3° (SD 12.3°, range to −31° to 37°) in Hip group and −4.7° (SD 21.5°, range −86° to 38°) in Spine group. There was no significant difference in mean OA among groups. However, the more subnormal and abnormal patients were in Spine group compared to C and Hip groups. The mean value of the rotation angle in C group was 18.1° (SD 9.1°, range 5° to 43°). There was significant difference in RA between Hip and Spine groups (21.1° (SD 8.0°) and 16.0° (SD 10.7°), respectively) (p=0.04). Conclusion. This study highlights new informations obtained by the quantitative analysis of pelvis rotation between standing and sitting in healthy, hip pathology patients and spine pathology patients using 3D reconstruction from bi-planar radiographs. Hip and spine pathologies affect stand to sit pelvic kinematics. Surgeons should be aware of potential abnormal stand to sit transition in such clinical situations. This improved assessment of the pelvic rotational adaptation could lead to a more personalized approach for the planning of hip prostheses


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_5 | Pages 55 - 55
1 Feb 2016
Grupp R Otake Y Murphy R Parvizi J Armand M Taylor R
Full Access

Computer-aided surgical systems commonly use preoperative CT scans when performing pelvic osteotomies for intraoperative navigation. These systems have the potential to improve the safety and accuracy of pelvic osteotomies, however, exposing the patient to radiation is a significant drawback. In order to reduce radiation exposure, we propose a new smooth extrapolation method leveraging a partial pelvis CT and a statistical shape model (SSM) of the full pelvis in order to estimate a patient's complete pelvis. A SSM of normal, complete, female pelvis anatomy was created and evaluated from 42 subjects. A leave-one-out test was performed to characterise the inherent generalisation capability of the SSM. An additional leave-one-out test was conducted to measure performance of the smooth extrapolation method and an existing “cut-and-paste” extrapolation method. Unknown anatomy was simulated by keeping the axial slices of the patient's acetabulum intact and varying the amount of the superior iliac crest retained; from 0% to 15% of the total pelvis extent. The smooth technique showed an average improvement over the cut-and-paste method of 1.31 mm and 3.61 mm, in RMS and maximum surface error, respectively. With 5% of the iliac crest retained, the smoothly estimated surface had an RMS surface error of 2.21 mm, an improvement of 1.25 mm when retaining none of the iliac crest. This anatomical estimation method creates the possibility of a patient and surgeon benefiting from the use of a CAS system and simultaneously reducing the patient's radiation exposure


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_II | Pages 113 - 113
1 Feb 2012
Gupta A Burne DH Blunn G Briggs T Cannon S
Full Access

Chondrosarcoma is a malignant tumour and accounts for approximately 20% of bone sarcomas. The pelvis is one of the commonest sites. Chondrosarcoma of the pelvis lends itself to surgical excision and is relatively resistant to irradiation and chemotherapy. A long term survival analysis of this challenging condition is rarely reported in literature. We review and evaluate the oncological and functional results of all the patients operated at our centre and we analyse the survival analysis of these patients with special focus on the prognostic factors. Fifty-four consecutive patients with chondrosarcoma of the pelvis who were treated at the Royal National Orthopaedic Hospital, Stanmore, UK between 1987 and 2001 were included in the study. Demographic data, case notes, histopathological results and follow-up data were obtained and statistically analysed. There were 38 males and 16 females with a mean age of 48.4 years [18-77]. The chondrosarcomas were primary [n=38], secondary [n-7] or recurrences [n=9]. The anatomical sites in the pelvis were in the epicentre I [n=24], II [n=20] and III [n=10]. The surgical procedures performed were local resection [n=28], local resection and hip arthroplasty [n=6], hemipelvectomy (+endoprothesis) [n=16], hemipelvectomy [+fibular strut graf] [n=2] and hinquarter amputation [n=2]. The histological grade was Gr [n=27], Gr 2[n=20] and Gr 3 [n=7]. The complication rate was 24%:wound revision [9%], dislocation [8%] and infection [7%]. There was a 5, 10 and 15 year cumulative survival rate of 74%, 65% and 40%. The overall recurrence rate was 24%. The factors associated with a worse prognosis were high histologic tumour grade, increasing patient age, anatomical location in site I and III, primary surgery outside of tumour centre, inadequate surgical margins, and those treated by local extension. Aggressive surgical approach significantly improves the prognosis of the patients with chondrosarcoma of the pelvis


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 92 - 92
23 Feb 2023
Lee S Lin J Lynch J Smith P
Full Access

Dysmorphic pelves are a known risk factor for malpositioned iliosacral screws. Improved understanding of pelvic morphology will minimise the risk of screw misplacement, neurovascular injuries and failed fixation. Existing classifications for sacral anatomy are complex and impractical for clinical use. We propose a CT-based classification using variations in pelvic anatomy to predict the availability of transosseous corridors across the sacrum. The classification aims to refine surgical planning which may reduce the risk of surgical complications.

The authors postulated 4 types of pelves. The “superior most point of the sacroiliac joint” (sSIJ) typically corresponds with the mid-lower half of the L5 vertebral body. Hence, “the anterior cortex of L5” (L5a) was divided to reference 3 distinct pelvic groups. A 4th group is required to represent pelves with a lumbosacral transitional vertebra. The proposed classification:

A – sSIJ is above the midpoint of L5a

B – sSIJ is between the midpoint and the lowest point of L5a

C – sSIJ is below the lowest point of L5a

D – pelves with a lumbosacral transitional vertebra

Specific measures such as the width of the S1 and S2 axial and coronal corridors and the S1 lateral mass angles were used to differentiate between pelvic types.

Three-hundred pelvic CT scans were classified into their respective types. Analysis of the specific measures mentioned above illustrated the significant difference between each pelvic type. Changes in the size of S1 and S2 axial corridors formed a pattern that was unique for each pelvic type. The intra- and inter-observer ratings were 0.97 and 0.95 respectively.

Distinct relationships between the sizes of S1 and S2 axial corridors informed our recommendations on trans-sacral or iliosacral fixation, number and orientation of screws for each pelvic type. This classification utilises variations in the posterior pelvic ring to offer a planning guide for the insertion of iliosacral screws.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_16 | Pages 11 - 11
1 Oct 2014
Paul L Cartiaux O Odri G Gouin F
Full Access

Resecting bone tumours within the pelvis is highly challenging and requires good cutting accuracy to achieve sufficient margins. Computer-assisted technologies such as intraoperative navigation have been developed for pelvic bone tumour resection. Patient-specific instruments have been transposed to tumour surgery. The present study reports a series of 11 clinical cases of PSI-assisted bone tumour surgery within the pelvis, and assesses how accurately a preoperative resection strategy can be replicated intraoperatively with the PSI. The patient series consisted in 11 patients eligible for curative surgical resection of primary bone tumor of the pelvis. Eight patients had a bone sarcoma of iliac bone involving the acetabulum, two patients had a sacral tumor, and one patient had a chondrosarcoma of proximal femur with intra-articular hip extension. Resection planning was preoperatively defined including a safe margin defined by the surgeon from 3 up to 15 mm. PSI were designed using a computer-aided design software according to the desired resection strategy and produced by additive manufacturing technology. Intraoperatively, PSI were positioned freehand by the surgeon and fixed on the bone surface using K-wires. The standard surgical approach has been used for each patient. Dissection was in accordance with the routine technique. There was no additional bone exposure to position the PSI. Histopathological analysis of the resected tumor specimens was performed to evaluate the achieved resection margins. Postoperative CT were acquired and matched to the preoperative CT to assess the local control of the tumor. Two parameters were measured: achieved resection margin (minimum distance to the tumor) and location accuracy (maximum distance between achieved and planned cuttings; ISO1101 standard). PSI were quick and easy to use with a positioning onto the bone surface in less than 5 minutes for all cases. The positioning of the PSI was considered unambiguous for all patients. Histopathological analysis classified all achieved resection margins as R0 (tumor-free), except for two patients : R2 because of a morcelised tumour and R1 in soft tissues. The errors in safe margin averaged −0.8 mm (95% CI: −1.8 mm to 0.1 mm). The location accuracy of the achieved cut planes with respect to the desired cut planes averaged 2.5 mm (95% CI: 1.8 to 3.2 mm). Results in terms of safe margin or the location accuracy demonstrated how PSI enabled the surgeon to intraoperatively replicate the resection strategies with a very good cutting accuracy. These findings are consistent with the levels of bone-cutting accuracy published in the literature. PSI technology described in this study achieved clear bone margins for all patients. Longer follow-up period is required but it appears that PSI has the potential to provide clinically acceptable margins


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 145 - 145
1 Sep 2012
Fabbri N Kreshak JL Ruggieri P Sim FH Mercuri M
Full Access

Purpose. Durable fixation may be difficult to achieve when significant bone loss is present, as it occurs in pelvic sarcoma resection and revision surgery of tumor implants. Purpose of this study was to review clinical results of primary and revision surgery of the pelvis and lower extremity in the setting of severe bone loss following limb salvage procedures for bone sarcoma using modular porous tantalum implants. Method. Retrospective study of 15 patients (nine females, six males) undergoing primary or revision pelvic reconstruction (five patients) or revision surgery of a tumor implant of the hip (five patients), knee (four patients), and ankle (one patient) using porous tantalum implants was undertaken. Reason for the tumor implant was resection of bone sarcoma in 13 cases and tumor-like massive bone loss in the remaining two cases. Cause for revision was aseptic failure (nine patients) or deep infection (six patients); average age at the time of surgery was 31 years (16–61 yrs). Revision was managed in a staged fashion in all the six infected cases. All patients presented severe combined segmental and cavitary bone defects. Bone loss was managed in all patients using porous tantalum implants as augmentation of residual bone stock and associated with a megaprosthesis in eight cases (five proximal femur, two distal femur, one proximal tibia). Average follow-up was 4.5 years for hip/knee implants and 2.5 yrs for pelvic reconstructions (range 1–6.8 yrs). Minimum follow-up of two years was available in 11 cases. Results. Infection recurred in one of the six cases managed for infection, requiring further treatment but allowing retention of the porous tantalum implant. All the patients showed well-fixed and functioning implants at latest follow-up. Conclusion. Porous tantalum has been very successful at early follow-up in patients with severe bone loss following primary and revision tumor-related surgery of the pelvis and lower extremity. Longer follow-up is required to appreciate long-term shortcomings


Full Access

Introduction. Deciding the acetabular cup inclination and anteversion is an important step in total hip arthroplasty. Despite numerous studies focusing on enhancement of precise positioning into anatomical safe zone, problem remains regarding which is the “optimal anteversion” and what is the proper anatomical reference during the surgery. Objectives. The purpose of this study is to evaluate pelvic tilt angle measured in standing lateral view of pelvis in patients with hip osteoarthritis, and to find out the correlations between pelvic tilt angle (on Lewinnek anterior pelvic plane) and optimal anteversion position in total hip arthroplasty surgery. Results. The average pelvic tilt angle is 8.79 degree with standard deviation 8.25 degree. There have no statistically significant difference between the pelvic tilt angles of male and female patients, or patients received total hip arthroplasty and patients did not received surgery. The pelvic tilt angle significantly greater in patients older than 60 years old compared with patients younger than 60 years old (12 degree Vs 4 degree, p<0.005). Conclusions. There are large variations in the pelvic AP tilting between individuals, and the posterior tilting of pelvis increased with aging. Our findings suggested that instead of body axis measured when patient is in decubitus position on the table, cup positioning during total hip arthroplasty should be based on the functional position when patients is in upright position. The difference between functional position and bony axis might increase with age; hence increase the risk of over anteversion in cup positioning. This might lead to impingement between cup and femur prosthesis and cause early failure or dislocation. While positioning the patient using lateral position, surgeons should pay attention to anterior pelvic plane and pelvic tilt angle (taking from lateral standing position) for estimation of anteversion of cup


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_22 | Pages 61 - 61
1 May 2013
MacDonald S
Full Access

In North America, and for the most part globally, a cementless acetabular component with adjuvant screw fixation is the preferred technique for revision total hip arthroplasty. However, there are situations that involve massive pelvic bone loss that preclude the use of a cementless cup alone. Options include: . i). Enhanced fixation components and augments. ii). Specialised constructs (cup/cage). iii). Structural allografts. iv). Bone graft substitutes. Complex acetabular revisions present the arthroplasty surgeon with challenges that require an approach with more than one solution for all scenarios. While structural allografts have recently fallen out of favour with the increasing use of enhanced fixation components, there would still appear to be a role in the case in which bone stock restoration is a primary goal. The role of bone graft substitutes remains unclear, with supportive basic science data, but limited clinical experience to date. An algorithm will be discussed to assist in prioritising the multiple goals of acetabular reconstruction and one stock restoration


Introduction. Limb-length discrepancy (LLD) is a common postoperative complication after total hip arthroplasty (THA). This study focuses on the correlation between patients’ perception of LLD after THA and the anatomical and functional leg length, pelvic and knee alignments and foot height. Previous publications have explored this topic in patients without significant spinal pathology or previous spine or lower extremity surgery. The objective of this work is to verify if the results are the same in case of stiff or fused spine. Methods. 170 patients with stiff spine (less than 10° L1-S1 lordosis variation between standing and sitting) were evaluated minimum 1 year after unilateral primary THA implantation using EOS® images in standing position (46/170 had previous lumbar fusion). We excluded cases with previous lower limbs surgery or frontal and sagittal spinal imbalance. 3D measures were performed to evaluate femoral and tibial length, femoral offset, pelvic obliquity, hip-knee-ankle angle (HKA), knee flexion/hyperextension angle, tibial and femoral rotation. Axial pelvic rotation was measured as the angle between the line through the centers of the hips and the EOS x-ray beam source. The distance between middle of the tibial plafond and the ground was used to investigate the height of the foot. For data with normal distribution, paired Student's t-test and independent sample t-test were used for analysis. Univariate logistic regression was used to determine the correlation between the perception of limb length discrepancy and different variables. Multiple logistic regression was used to investigate the correlation between the patient perception of LLD and variables found significant in the univariate analysis. Significance level was set at 0.05. Results. Anatomical femoral length correlated with patients’ perception of LLD but other variables were significant (the height of the foot, sagittal and frontal knee alignment, pelvic obliquity and pelvic rotation more than 10°). Interestingly some factors induced an unexpected perception of LLD despite a non-significant femoral length discrepancy less than 1cm (pelvic rotation and obliquity, height of the foot). Conclusions. LLD is a multifactorial problem. This study showed that the anatomical femoral length as the factor that can be modified with THA technique or choice of prosthesis is not the only important factor. A comprehensive clinical and radiological evaluation is necessary preoperatively to investigate spinal stiffness, pelvic obliquity and rotation, sagittal and coronal knee alignment and foot deformity in these patients. Our study has limitations as we do not have preoperative EOS measurements for all patients. We cannot assess changes in leg length as a result of THA. We also did not investigate the degree of any foot deformities as flat foot deformity may potentially affect the patients perception of the leg length. Instead, we measured the distance between the medial malleolus and ground that can reflect the foot arch height. More cases must be included to evaluate the potential influence of pelvis anatomy and functional orientation (pelvic incidence, sacral slope and pelvic tilt) but this study points out that spinal stiffness significantly decreases the LLD tolerance previously reported in patients without degenerative stiffness or fusion


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_23 | Pages 15 - 15
1 May 2013
Giotikas D Daivajna S Kaminaris M Norrish A
Full Access

Previous reports have shown the efficacy of muscle interposition grafts in treating recalcitrant infection in the presence of hip arthroplasty. We report our experience with a two stage debridement and rectus femoris pedicled interposition graft technique in chronic severe native hip infection with a persistent draining sinus. During the last 16 months, three paraplegic patients presented with persistently draining sinuses and chronic osteomyelitis of the pelvis, acetabulum and proximal femur, in a total of four hips. The mean patient age was 49 years (range, 40 to 59 years). In all patients there had been previous attempts to control the infection with wound debridement and long-term antibiotics. A two-stage operative treatment was used in all patients. The first stage comprised wound debridement, washout, gentamycin-bead application and temporary vacuum assisted wound coverage. At the second stage, approximately ten days later, through a standard anterior midline incision, the rectus femoris muscle was elevated on its pedicle, rolled, transposed into the acetabulum and sutured to the transverse acetabular ligament. At the second stage, all patients had local administration of antibiotics with genetamycin impregnated absorbable collagen fleece and all wounds were closed by delayed primary closure with a negative pressure dressing placed over the closed wound. All patients were commenced on a 6 week course of intravenous antibiotics, according to sensitivities. No loss of flap occurred in any of the patients. One wound had partial dehiscence and required a split skin graft. At the final follow-up examination all the wounds were healed and there was no recurrence of draining sinuses, pressure sores or systemic sepsis. The two stage technique with a pedicled rectus femoris interposition graft may be a useful technique for the treatment of complex chronic persistent osteomyelitis of the pelvis, acetabulum and proximal femur, with the primary aim of stopping the discharging sinus


Bone & Joint 360
Vol. 5, Issue 1 | Pages 12 - 14
1 Feb 2016


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_16 | Pages 36 - 36
1 Oct 2014
Ritacco L Milano F Farfalli GL Aponte-Tinao LA
Full Access

Introduction. Three-dimensional preoperative planning and bone tumour resection by navigation have been used in the past ten years. According to literature this workflow increases the surgical “accuracy”. However, there are a few and not completely clear reports describing accuracy in preoperative planning and navigation. The objective of this preliminary study was to determine the accuracy of osteotomies planned and guided by navigation in pelvis tumour resection. We assume that the surgical specimen scanned and 3D reconstructed is an acceptable method to determine the accuracy qualitatively and quantitatively of a virtual planning and navigation surgical workflow. Materials and Methods. A total of four patients were evaluated between May 2010 and February 2011, age range: 6–38, 17.4 mean; 2 males and 2 females. There were 4 malignant tumours: Malignant Schwannoma (1), Ewing's tumor (1) and Chondrosarcoma (2). All anatomic regions compromised by the tumour were preoperatively CT scanned (Mutislice 64, Aquilion, Toshiba Medical Systems, Otawara, Japan). Magnetic resonance images (MRI) of the corresponding region were acquired using a 1.5-T unit (Magnetom Avanto, Siemens Medical Solutions, Erlangen, Germany). Image fusion was applied to CT and MRI studies in order to determine the bone cortex and the intra-extraosseous soft tissues tumour extension. Once the fusion was obtained osteotomies were planned, taking into account the tumour extension in a three-dimensional virtual scenario. All patients were planned for two uniplanar osteotomies (intercalary resection). The minimal margin was determined in each plane by measuring the closest distance between malignant tumour and osteotomy plane. These studies allowed the visualisation of the tumour and the application of a virtual osteotomy. The simulation was carried out by using a computer-aided design (CAD) software, Mimics (Materialise, Leuven, Belgium). Three-dimensional preoperative planning was obtained in CAD format. Next, 3D models were exported to CT data sets in Digital Imaging and Communications in Medicine (DICOM) format and uploaded to the navigation system (3D OrthoMap navigation software v1.0, Stryker Navigator, Freiburg, Germany). Using the standard navigation tools (navigated pointer, camera and infrared tracker devices applied to the patient) the surgeon was able to establish a correspondence in a computer monitor between 3D images and real bone. Once osteotomies were performed, the tumour surgical specimen obtained was CT scanned and 3D reconstructed similarly to what was done previously to surgery to CT images acquired with the preoperative protocol in patients. Results. The correlation between the osteotomies preoperatively planned and the osteotomies achieved by navigation was in a global mean of 0.73 millimeters (SD: 3.14) in a total of 6 planes evaluated. Conclusion. According to clinical relevance, this work shows an acceptable accuracy in preoperative planning and navigation. Furthermore, we demonstrate the usefulness of three-dimensional models of surgical specimens when surgeons need to determine quantitative and qualitative accuracy of 3D planning and navigation procedures


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 142 - 142
1 Jan 2016
Lazennec JY Brusson A Pour AE Rousseau M
Full Access

Introduction. The gold standard for knee surgery is the restoration of the so-called «neutral mechanical alignment ». Recent literature as pointed out the patients with «constitutional varus »; in these cases, restoring neutral alignment could be abnormal and even undesirable. The same situation can be observed in patients with «constitutional valgus alignment ». To date, these outliers cases have only been explored focusing on the lower limb; the influence of the pelvic morphotype has not been studied. Intuitively, the pelvic width could be a significant factor. The EOS low dose imaging technique provides full body standing X-rays to evaluate the global anatomy of the patient. This work explores the influence of the pelvic parameters on the frontal knee alignment. Material and methods. – We included 170 patients (340 lower extremities). 2 operators performed measurements once per patient on AP X-rays. The classical anatomical parameters were:. –. Femoral mechanical angle (FMA). –. Tibial mechanical angle (TMA). –. Hip knee shaft angle (HKS). –. Hip knee ankle angle (HKA). –. Femoral and tibial lengths. The morphotype was evaluated by:. –. the distances between the center of two femoral heads (FHD), between knees (KD) and between ankles (AD). –. the medial neck-shaft angle (MNSA). –. the femoral offset. The horizontal distance between the limb mechanical axis (line passing from center of the femoral head to the center of the ankle) and the center of the knee was called the intrinsic mechanical axis deviation (IMAD) (fig 1). The horizontal distance between the pelvic mechanical axis (line from the center of the sacral plate to the center of the ankle) and the center of the knee was called the global mechanical axis deviation (GMAD) (fig 2). Inter-Operator Reliability was calculated with Intra-class Correlation Coefficient (ICC) and Inter-Reader Agreement was assessed with Bland-Altman test. A relationship between IMAD and GMAD to the other parameters was assessed using Pearson's correlation coefficient. Results. Inter-Operator Reliability was high for femoral offset, TMA and MSNA (ICC > 0,88) and very high for the other parameters (ICC > 0,93). These values are given in table 1 and all the 2D parameters are given in the table 2. IMAD was significantly correlated with HKA (r = 0,99), FMA (r = −0,58), TMA (r = −0,61) and KD (r = 0,72). GMAD was significantly correlated with HKA (r = 0,94), FMA (r = −0,53), TMA (r = −0,60) and KD (r = 0,67). Two groups were identified according to pelvic width (FHD):. Group 1 (standard patients): Pelvic width < 18 cm (164 lower extremities). Group 2 (wide pelvis): Pelvic width ≥ 18 cm (176 lower extremities). For standard patients the FHD is a significant parameter, whereas the proximal femoral anatomy (offset and MNSA) are more relevant for wide pelvis. Conclusion. Accurate analysis of the morphotype of the lower limbs is essential for planning femoral or tibial osteotomy and knee prostheses. Taking into account pelvic morphotype can provide additional informations for the axes restoration and the detection of outliers patients


Introduction. In the previous study regarding the relationship among maximum hip flexion, the pelvis, and the lumbar vertebrae on the sagittal plane, we have found in X-rays that the lumbo lordotic angle (LLA) and the sacral slope angle (SSA) have a large impact on hip flexion angle. We examined hip flexion angles to the various height of the objects (half round plastic tube) placed under the subject's lower back and compared the passive hip flexion angles in the supine position between younger and middle age groups. Participants. The participants were 14 healthy volunteers: 7 females with an average age of 17 years (Group 1: G-1), 7 females with an average age of 45 years (Group 2: G-2). The average BMI (Body Mass Index) of volunteers was less than 25, and their Tomas Tests were negative. Methods. The hip flexion angle was measured in six stages as half round plastic tube placed under the subject's lower back gradually increased in height by 5mm. StageZero is the Regular Position with nothing placed under the subject's lower back: RP (specified Japanese Orthopedics Association and Rehabilitation Medical Association). The next five stages (from Stage One) were performed in the Limited Position (LP) of the posterior pelvic tilt and lumbar movement by placing the tube under the subject's lower back. The height of tube is 2.2 cm. Stage One started at 2.2cm. Each Stage from Stage One has a difference in the height of 5mm. Stage Zero: 0cm, Stage 1: 2.2cm, Stage 2: 2.7cm, Stage 3: 3.2cm, Stage 4: 3.7cm, Stage 5: 4.2cm,. Analysis. We compared the hip flexion angle of six stages of the two groups. A two-way repeated measurement ANOVA was used to compare the differences in hip flexion angle of G1 and G2. Statistical significant was established at p < 0.05. Further, we took X-rays of a healthy female and examined the LLA, SSA, and Lumbo Sacral Angle (LSA) during hip maximum flexion. Results & Discussion. In RP (Stage Zero), the LLA and the SSA had a large impact on hip flexion angle observed in X-rays. In Stages1-6, there was a slight movement in the LLA and the SSA. The higher the tubes’ height, the smaller the hip flexion angle. When the height was low, the posterior pelvic tilt became large, resulting in a larger hip flexion angle. The fulcrum rotational point of the hip flexion would move to the lumbar side. We need to determine and tailor the height of object to each individual lumbar lordosis


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 63 - 63
1 Oct 2012
Schumann S Nolte L Zheng G
Full Access

The integration of statistical shape models (SSMs) for generating a patient-specific model from sparse data is widely spread. The SSM needs to be initially registered to the coordinate-system in which the data is acquired and then be instantiated based on the point data using some regressing techniques such as principal component analysis (PCR). Besides PCR, partial least squares regression (PLSR) could also be used to predict a patient-specific model. PLSR combines properties of PCR and multiple linear regression and could be used for shape prediction based on morphological parameters. Both methods were compared on the basis of two SSMs, each of them constructed from 30 surface models of the proximal femur and the pelvis, respectively. Thirty leave-one-out trials were performed, in which one surface was consecutively left out and further used as ground truth surface model. Landmark data were randomly derived from the surface models and used together with the remaining 29 surface models to predict the left-out surface model based on PCR and PLSR, respectively. The prediction accuracy was analysed by comparing the ground truth model with the corresponding predicted model and expressed in terms of mean surface distance error. According to their obtained minimum error, PCR (1.62 mm) and PLSR (1. 63 mm) gave similar results for a set of 50 randomly chosen landmarks. However PLSR seems to be more susceptible to a wrong selection of number of latent vectors, as it has a more variation in the error. Although both regression methods gave similar results, decision needs to be done, how to select the optimal number of regressors, which is a delicate task. In order to predict a surface model based on morphological parameters using PLSR, the choice of the parameters and their optimal number needs to be carefully selected


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 89 - 89
1 Mar 2017
Plate J Shields J Bolognesi M Seyler T Lang J
Full Access

Introduction

The number of complex revision total hip arthroplasties (THA) is predicted to rise. The identification of acetabular bone defects prior to revision THA has important implications on technique and complexity of acetabular reconstruction. Paprosky et al. proposed a classification system including 3 main types with up to 3 subtypes focused on the integrity of the superior rim of the acetabulum and medial wall. However, the classification system is complex and its reliability has been questioned. The purpose of this study was to evaluate the effectiveness of different radiologic imaging modalities (plain radiographs, 2-D CT, 3-D CT reconstructions) in classifying acetabular defects in revision hip arthroplasty cases and their value of at different levels of orthopaedic training.

Methods

Patients treated with revision total hip arthroplasty for acetabular bone defects between 2002–2012 were identified and 22 cases selected that had plain radiographs, 2-D CT and 3-D reconstructions available. Bone defects were classified independently by two fellowship-trained adult reconstruction surgeons. Representative sections were chosen and compiled into a timed presentation. Thirty-five residents from PGY-1 to PGY-5 and 4 attending orthopaedic surgeons were recruited for this study and received a 15-minute introduction to the classification system. Chi square analysis was utilized to examine the influence of image modality and level of training on the correct classification of acetabular bone loss using the Paprosky classification system with alpha=0.05.