Radiation induced sarcoma of bone is a rare but challenging disease process associated with a poor prognosis. To date, series are limited by small patient numbers; data to inform prognosis and the optimal management for these patients is needed. We hypothesized that patients with radiation-induced
Aims. The aim of this study was to optimize screw hole placement in an acetabulum cup implant to improve secondary initial fixation by identifying the region of thickest acetabulum bone. The “scratch fit” of modern acetabular cup implants with highly porous coatings is often adequate for initial fixation in primary total hip arthroplasty. Initial fixation must limit micromotion to acceptable levels to facilitate osseointegration and long term cup stability. Secondary initial fixation can be required in cases with poor bone quality or bone loss and is commonly achieved with bone screws and a cup implant with multiple screw holes. To provide maximum secondary initial fixation, the cup screw holes should be positioned to allow access to the limited region of thick
Postoperative dislocation following total hip arthroplasty (THA) remains a significant concern with a reported incidence of 1% to 10%. The risk of dislocation is multifactorial and includes both surgeon-related (i.e. implant position, component size, surgical approach) and patient-related factors (i.e. gender, age, preoperative diagnosis, neurologic disorders). While the majority of prior investigations have focused on the importance of acetabular component positioning, recent studies have shown that approximately 60% of “dislocators” following primary THA have an acceptably aligned acetabular component. Therefore, the importance of the relationship between the spine and
Magnification of anteroposterior radiographs of the
Computer-aided surgical systems commonly use preoperative CT scans when performing pelvic osteotomies for intraoperative navigation. These systems have the potential to improve the safety and accuracy of pelvic osteotomies, however, exposing the patient to radiation is a significant drawback. In order to reduce radiation exposure, we propose a new smooth extrapolation method leveraging a partial
Introduction. Stand to sit
Chondrosarcoma is a malignant tumour and accounts for approximately 20% of bone sarcomas. The
Dysmorphic pelves are a known risk factor for malpositioned iliosacral screws. Improved understanding of pelvic morphology will minimise the risk of screw misplacement, neurovascular injuries and failed fixation. Existing classifications for sacral anatomy are complex and impractical for clinical use. We propose a CT-based classification using variations in pelvic anatomy to predict the availability of transosseous corridors across the sacrum. The classification aims to refine surgical planning which may reduce the risk of surgical complications. The authors postulated 4 types of pelves. The “superior most point of the sacroiliac joint” (sSIJ) typically corresponds with the mid-lower half of the L5 vertebral body. Hence, “the anterior cortex of L5” (L5a) was divided to reference 3 distinct pelvic groups. A 4th group is required to represent pelves with a lumbosacral transitional vertebra. The proposed classification: A – sSIJ is above the midpoint of L5a B – sSIJ is between the midpoint and the lowest point of L5a C – sSIJ is below the lowest point of L5a D – pelves with a lumbosacral transitional vertebra Specific measures such as the width of the S1 and S2 axial and coronal corridors and the S1 lateral mass angles were used to differentiate between pelvic types. Three-hundred pelvic CT scans were classified into their respective types. Analysis of the specific measures mentioned above illustrated the significant difference between each pelvic type. Changes in the size of S1 and S2 axial corridors formed a pattern that was unique for each pelvic type. The intra- and inter-observer ratings were 0.97 and 0.95 respectively. Distinct relationships between the sizes of S1 and S2 axial corridors informed our recommendations on trans-sacral or iliosacral fixation, number and orientation of screws for each pelvic type. This classification utilises variations in the posterior pelvic ring to offer a planning guide for the insertion of iliosacral screws.
Resecting bone tumours within the
Purpose. Durable fixation may be difficult to achieve when significant bone loss is present, as it occurs in pelvic sarcoma resection and revision surgery of tumor implants. Purpose of this study was to review clinical results of primary and revision surgery of the
In North America, and for the most part globally, a cementless acetabular component with adjuvant screw fixation is the preferred technique for revision total hip arthroplasty. However, there are situations that involve massive
Introduction. Deciding the acetabular cup inclination and anteversion is an important step in total hip arthroplasty. Despite numerous studies focusing on enhancement of precise positioning into anatomical safe zone, problem remains regarding which is the “optimal anteversion” and what is the proper anatomical reference during the surgery. Objectives. The purpose of this study is to evaluate pelvic tilt angle measured in standing lateral view of
Introduction. Limb-length discrepancy (LLD) is a common postoperative complication after total hip arthroplasty (THA). This study focuses on the correlation between patients’ perception of LLD after THA and the anatomical and functional leg length, pelvic and knee alignments and foot height. Previous publications have explored this topic in patients without significant spinal pathology or previous spine or lower extremity surgery. The objective of this work is to verify if the results are the same in case of stiff or fused spine. Methods. 170 patients with stiff spine (less than 10° L1-S1 lordosis variation between standing and sitting) were evaluated minimum 1 year after unilateral primary THA implantation using EOS® images in standing position (46/170 had previous lumbar fusion). We excluded cases with previous lower limbs surgery or frontal and sagittal spinal imbalance. 3D measures were performed to evaluate femoral and tibial length, femoral offset, pelvic obliquity, hip-knee-ankle angle (HKA), knee flexion/hyperextension angle, tibial and femoral rotation. Axial pelvic rotation was measured as the angle between the line through the centers of the hips and the EOS x-ray beam source. The distance between middle of the tibial plafond and the ground was used to investigate the height of the foot. For data with normal distribution, paired Student's t-test and independent sample t-test were used for analysis. Univariate logistic regression was used to determine the correlation between the perception of limb length discrepancy and different variables. Multiple logistic regression was used to investigate the correlation between the patient perception of LLD and variables found significant in the univariate analysis. Significance level was set at 0.05. Results. Anatomical femoral length correlated with patients’ perception of LLD but other variables were significant (the height of the foot, sagittal and frontal knee alignment, pelvic obliquity and pelvic rotation more than 10°). Interestingly some factors induced an unexpected perception of LLD despite a non-significant femoral length discrepancy less than 1cm (pelvic rotation and obliquity, height of the foot). Conclusions. LLD is a multifactorial problem. This study showed that the anatomical femoral length as the factor that can be modified with THA technique or choice of prosthesis is not the only important factor. A comprehensive clinical and radiological evaluation is necessary preoperatively to investigate spinal stiffness, pelvic obliquity and rotation, sagittal and coronal knee alignment and foot deformity in these patients. Our study has limitations as we do not have preoperative EOS measurements for all patients. We cannot assess changes in leg length as a result of THA. We also did not investigate the degree of any foot deformities as flat foot deformity may potentially affect the patients perception of the leg length. Instead, we measured the distance between the medial malleolus and ground that can reflect the foot arch height. More cases must be included to evaluate the potential influence of
Previous reports have shown the efficacy of muscle interposition grafts in treating recalcitrant infection in the presence of hip arthroplasty. We report our experience with a two stage debridement and rectus femoris pedicled interposition graft technique in chronic severe native hip infection with a persistent draining sinus. During the last 16 months, three paraplegic patients presented with persistently draining sinuses and chronic osteomyelitis of the
Introduction. Three-dimensional preoperative planning and bone tumour resection by navigation have been used in the past ten years. According to literature this workflow increases the surgical “accuracy”. However, there are a few and not completely clear reports describing accuracy in preoperative planning and navigation. The objective of this preliminary study was to determine the accuracy of osteotomies planned and guided by navigation in
Introduction. The gold standard for knee surgery is the restoration of the so-called «neutral mechanical alignment ». Recent literature as pointed out the patients with «constitutional varus »; in these cases, restoring neutral alignment could be abnormal and even undesirable. The same situation can be observed in patients with «constitutional valgus alignment ». To date, these outliers cases have only been explored focusing on the lower limb; the influence of the pelvic morphotype has not been studied. Intuitively, the pelvic width could be a significant factor. The EOS low dose imaging technique provides full body standing X-rays to evaluate the global anatomy of the patient. This work explores the influence of the pelvic parameters on the frontal knee alignment. Material and methods. – We included 170 patients (340 lower extremities). 2 operators performed measurements once per patient on AP X-rays. The classical anatomical parameters were:. –. Femoral mechanical angle (FMA). –. Tibial mechanical angle (TMA). –. Hip knee shaft angle (HKS). –. Hip knee ankle angle (HKA). –. Femoral and tibial lengths. The morphotype was evaluated by:. –. the distances between the center of two femoral heads (FHD), between knees (KD) and between ankles (AD). –. the medial neck-shaft angle (MNSA). –. the femoral offset. The horizontal distance between the limb mechanical axis (line passing from center of the femoral head to the center of the ankle) and the center of the knee was called the intrinsic mechanical axis deviation (IMAD) (fig 1). The horizontal distance between the pelvic mechanical axis (line from the center of the sacral plate to the center of the ankle) and the center of the knee was called the global mechanical axis deviation (GMAD) (fig 2). Inter-Operator Reliability was calculated with Intra-class Correlation Coefficient (ICC) and Inter-Reader Agreement was assessed with Bland-Altman test. A relationship between IMAD and GMAD to the other parameters was assessed using Pearson's correlation coefficient. Results. Inter-Operator Reliability was high for femoral offset, TMA and MSNA (ICC > 0,88) and very high for the other parameters (ICC > 0,93). These values are given in table 1 and all the 2D parameters are given in the table 2. IMAD was significantly correlated with HKA (r = 0,99), FMA (r = −0,58), TMA (r = −0,61) and KD (r = 0,72). GMAD was significantly correlated with HKA (r = 0,94), FMA (r = −0,53), TMA (r = −0,60) and KD (r = 0,67). Two groups were identified according to pelvic width (FHD):. Group 1 (standard patients): Pelvic width < 18 cm (164 lower extremities). Group 2 (wide pelvis): Pelvic width ≥ 18 cm (176 lower extremities). For standard patients the FHD is a significant parameter, whereas the proximal femoral anatomy (offset and MNSA) are more relevant for wide
The integration of statistical shape models (SSMs) for generating a patient-specific model from sparse data is widely spread. The SSM needs to be initially registered to the coordinate-system in which the data is acquired and then be instantiated based on the point data using some regressing techniques such as principal component analysis (PCR). Besides PCR, partial least squares regression (PLSR) could also be used to predict a patient-specific model. PLSR combines properties of PCR and multiple linear regression and could be used for shape prediction based on morphological parameters. Both methods were compared on the basis of two SSMs, each of them constructed from 30 surface models of the proximal femur and the
Introduction. In the previous study regarding the relationship among maximum hip flexion, the
The number of complex revision total hip arthroplasties (THA) is predicted to rise. The identification of acetabular bone defects prior to revision THA has important implications on technique and complexity of acetabular reconstruction. Paprosky et al. proposed a classification system including 3 main types with up to 3 subtypes focused on the integrity of the superior rim of the acetabulum and medial wall. However, the classification system is complex and its reliability has been questioned. The purpose of this study was to evaluate the effectiveness of different radiologic imaging modalities (plain radiographs, 2-D CT, 3-D CT reconstructions) in classifying acetabular defects in revision hip arthroplasty cases and their value of at different levels of orthopaedic training. Patients treated with revision total hip arthroplasty for acetabular bone defects between 2002–2012 were identified and 22 cases selected that had plain radiographs, 2-D CT and 3-D reconstructions available. Bone defects were classified independently by two fellowship-trained adult reconstruction surgeons. Representative sections were chosen and compiled into a timed presentation. Thirty-five residents from PGY-1 to PGY-5 and 4 attending orthopaedic surgeons were recruited for this study and received a 15-minute introduction to the classification system. Chi square analysis was utilized to examine the influence of image modality and level of training on the correct classification of acetabular bone loss using the Paprosky classification system with alpha=0.05.Introduction
Methods