Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 18 - 18
1 Mar 2021
Ng G Bankes M Grammatopoulos G Jeffers J Cobb J
Full Access

Abstract. OBJECTIVES. Cam femoroacetabular impingement (FAI – femoral head-neck deformity) and developmental dysplasia of the hip (DDH – insufficient acetabular coverage) constitute a large portion of adverse hip loading and early degeneration. Spinopelvic anatomy may play a role in hip stability thus we examined which anatomical relationships can best predict range of motion (ROM). METHODS. Twenty-four cadaveric hips with cam FAI or DDH (12:12) were CT imaged and measured for multiple femoral (alpha angles, head-neck offset, neck angles, version), acetabular (centre-edge angle, inclination, version), and spinopelvic features (pelvic incidence). The hips were denuded to the capsule and mounted onto a robotic tester. The robot positioned each hip in multiple flexion angles (Extension, Neutral 0°, Flexion 30°, Flexion 60°, Flexion 90°); and performed internal-external rotations to 5 Nm in each position. Independent t-tests compared the anatomical parameters and ROM between FAI and DDH (CI = 95%). Multiple linear regressions determined which anatomical parameters could predict ROM. RESULTS. The FAI group demonstrated restricted ROM in deep hip flexion, with DDH showing higher ROM in Flexion 30° (+20%, p = 0.03), 60° (+31%, p = 0.001), and 90° (+36%, p = 0.001). In Neutral 0° and Flexion 30°, femoral neck and version angles together predicted ROM (R. 2. = 60%, 58% respectively); whereas in Flexion 60°, pelvic incidence and femoral neck angle predicted ROM (R. 2. = 77%). In Flexion 90°, pelvic incidence and radial alpha angle together predicted ROM (R. 2. = 81%), where pelvic incidence alone accounted for 63% of this variance. CONCLUSIONS. Pelvic incidence is essential to predict hip ROM. Although a cam deformity or acetabular undercoverage can elevate risks of labral tears and progressive joint degeneration, they may not be primary indicators of restrictive hip impingement or dysplastic instability. Better delineating additional spinopelvic characteristics can formulate early diagnostic tools and improve opportunities for nonsurgical management. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 8 - 8
2 Jan 2024
Habash M Cawley D Devitt A
Full Access

Intra-Discal Vacuum Phenomenon (IDVP) represents an intradiscal nitrogen gas accumulation where a cavity opens in a supine position, lowering intra-discal pressure and generating a bubble. IDVP has been observed in up to 20% of elderly patients and reported in almost 50% of chronic LBP patients. With a highly accurate detection on CT, its significance lacks clarity and consideration within normative data. IDVP occurs with patterns of lumbar and/or lumbopelvic morphology and associated diagnoses. Over-60s population based sample of 2020 unrelated CT abdomen scans without acute spinal presentations, with sagittal reconstructions, inclusive of T12 to femoral heads, were analyzed for IDVP and pelvic incidence (PI). Subjects with diagnostic morphological associations of the lumbar spine, including previous fracture, autofusion, transitional vertebra and listhesis, were selected out and analyzed separately. Subjects were then equally grouped into low, medium and high PI. Prevalence of lumbar spine IDVP is 41.3%. 125 cases were excluded. 1603 subjects yielded 663 IDVP. This was increased in severity towards the lumbosacral junction (L1L2 9.4%, L2L3 10.9%, L3L4 13.7%, L4L5 19.9%, L5S1 28.5%) and those with low PI, while distribution was more even with high PI. 292 had positive diagnostic associations, which were more likely to occur at the level of isthmic spondylolisthesis, adjacent to a previous fracture or suprajacent to lumbosacral transitional vertebra (p<0.05). This study has identified normative values for prevalence and severity of IDVP in a normal aging population. Morphological patterns that influence the pattern of IVDP such as pelvic incidence and diagnostic associations provide novel insights to the function of the aging spine


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 60 - 60
1 Dec 2021
Rai A Khokher Z Kumar KHS Kuroda Y Khanduja V
Full Access

Abstract. Introduction. Recent reports show that spinopelvic mobility influences outcome following total hip arthroplasty. This scoping review investigates the relationship between spinopelvic parameters (SPPs) and symptomatic femoroacetabular impingement (FAI). Methods. A systematic search of EMBASE, PubMed and Cochrane for literature related to SPPs and FAI was undertaken as per PRISMA guidelines. Clinical outcome studies and prospective/retrospective studies investigating the role of SPPs in symptomatic FAI were included. Review articles, case reports and book chapters were excluded. Information extracted pertained to symptomatic cam deformities, pelvic tilt, acetabular version, biomechanics of dynamic movements and radiological FAI signs. Results. The search identified 42 papers for final analysis out of 1168 articles investigating the link between SPPs and pathological processes characteristic of FAI. Only one (2.4%) study was of level 1 evidence, five (11.9%) studies) were level 2, 17 (40.5%) were level 3 and 19 (45.2%) were level 4. Three studies associated FAI pathology with a greater pelvic incidence (PI), while four associated it with a smaller PI. Anterior pelvic tilt was associated with radiographic overcoverage parameters of FAI. In dynamic movements, decreased posterior pelvic tilt was a common feature in symptomatic FAI patients at increased hip flexion angles. FAI patients additionally demonstrated reduced sagittal pelvic ROM during dynamic hip flexion. Six studies found kinematic links between sagittal spinopelvic movement and sagittal and transverse plane hip movements. Conclusions. Our study shows that spinopelvic parameters can influence radiological and clinical manifestations of FAI, with pelvic incidence, acetabular version and muscular imbalances being aetiologically implicated. These factors may be amenable to non-surgical therapy. Individual spinopelvic mechanics may predispose to the development of FAI. If FAI pathoanatomy already exists, sagittal pelvic parameters can influence whether FAI symptoms develop and is an area of further research interest


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 79 - 79
2 Jan 2024
Rasouligandomani M Chemorion F Bisotti M Noailly J Ballester MG
Full Access

Adult Spine Deformity (ASD) is a degenerative condition of the adult spine leading to altered spine curvatures and mechanical balance. Computational approaches, like Finite Element (FE) Models have been proposed to explore the etiology or the treatment of ASD, through biomechanical simulations. However, while the personalization of the models is a cornerstone, personalized FE models are cumbersome to generate. To cover this need, we share a virtual cohort of 16807 thoracolumbar spine FE models with different spine morphologies, presented in an online user-interface platform (SpineView). To generate these models, EOS images are used, and 3D surface spine models are reconstructed. Then, a Statistical Shape Model (SSM), is built, to further adapt a FE structured mesh template for both the bone and the soft tissues of the spine, through mesh morphing. Eventually, the SSM deformation fields allow the personalization of the mean structured FE model, leading to generate FE meshes of thoracolumbar spines with different morphologies. Models can be selectively viewed and downloaded through SpineView, according to personalized user requests of specific morphologies characterized by the geometrical parameters: Pelvic Incidence; Pelvic Tilt; Sacral Slope; Lumbar Lordosis; Global Tilt; Cobb Angle; and GAP score. Data quality is assessed using visual aids, correlation analyses, heatmaps, network graphs, Anova and t-tests, and kernel density plots to compare spinopelvic parameter distributions and identify similarities and differences. Mesh quality and ranges of motion have been assessed to evaluate the quality of the FE models. This functional repository is unique to generate virtual patient cohorts in ASD. Acknowledgements: European Commission (MSCA-TN-ETN-2020-Disc4All-955735, ERC-2021-CoG-O-Health-101044828)


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 35 - 35
1 Dec 2022
Montanari S Griffoni C Cristofolini L Brodano GB
Full Access

Mechanical failure of spine posterior fixation in the lumbar region Is suspected to occur more frequently when the sagittal balance is not properly restored. While failures at the proximal extremity have been studied in the literature, the lumbar distal junctional pathology has received less attention. The aim of this work was to investigate if the spinopelvic parameters, which characterize the sagittal balance, could predict the mechanical failure of the posterior fixation in the distal lumbar region. All the spine surgeries performed in 2017-2019 at Rizzoli Institute were retrospectively analysed to extract all cases of lumbar distal junctional pathology. All the revision surgeries performed due to the pedicle screws pull-out, or the breakage of rods or screws, or the vertebral fracture, or the degenerative disc disease, in the distal extremity, were included in the junctional (JUNCT) group. A total of 83 cases were identified as JUNCT group. All the 241 fixation surgeries which to date have not failed were included in the control (CONTROL) group. Clinical data were extracted from both groups, and the main spinopelvic parameters were assessed from sagittal standing preoperative (pre-op) and postoperative (post-op) radiographs with the software Surgimap (Nemaris). In particular, pelvic incidence (PI), sagittal vertical axis (SVA), pelvic tilt (PT), T1 pelvic angle (TPA), sacral slope (SS) and lumbar lordosis (LL) have been measured. In JUNCT, the main failure cause was the screws pull-out (45%). Spine fixation with 7 or more levels were the most common in JUNCT (52%) in contrast to CONTROL (14%). In CONTROL, PT, TPA, SS and PI-LL were inside the recommended ranges of good sagittal balance. For these parameters, statistically significant differences were observed between pre-op and post-op (p<0.0001, p=0.01, p<0.0001, p=0.004, respectively, Wilcoxon test). In JUNCT, the spinopelvic parameters were out of the ranges of the good sagittal balance and the worsening of the balance was confirmed by the increase in PT, TPA, SVA, PI-LL and by the decrease of LL (p=0.002, p=0.003, p<0.0001, p=0.001, p=0.001, respectively, paired t-test) before the revision surgery. TPA (p=0.003, Kolmogorov-Smirnov test) and SS (p=0.03, unpaired t-test) differed significantly in pre-op between JUNCT and CONTROL. In post-op, PI-LL was significantly different between JUNCT and CONTROL (p=0.04, unpaired t-test). The regression model of PT vs PI was significantly different between JUNCT and CONTROL in pre-op (p=0.01, Z-test). These results showed that failure is most common in long fused segments, likely due to long lever arms leading to implant failure. If the sagittal balance is not properly restored, after the surgery the balance is expected to worsen, eventually leading to failure: this effect was confirmed by the worsening of all the spinopelvic parameters before the revision surgery in JUNCT. Conversely, a good sagittal balance seems to avoid a revision surgery, as it is visible is CONTROL. The mismatch PI-LL after the fixation seems to confirm a good sagittal balance and predict a good correction. The linear regression of PT vs PI suggests that the spine deformity and pelvic conformation could be a predictor for the failure after a fixation


Bone & Joint 360
Vol. 10, Issue 5 | Pages 12 - 13
1 Oct 2021