header advert
Results 1 - 20 of 94
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 29 - 29
17 Nov 2023
Morris T Dixon J Baldock T Eardley W
Full Access

Abstract. Objectives. The outcomes from patella fracture have remained dissatisfactory despite advances in treatment, especially from operative fixation1. Frequently, reoperation is required following open reduction and internal fixation (ORIF) of the patella due to prominent hardware since the standard technique for patella ORIF is tension band wiring (TBW) which inevitably leaves a bulky knot and irritates soft tissue given the patella's superficial position2. We performed a systematic review to determine the optimal treatment of patella fractures in the poor host. Methods. Three databases (EMBASE/Medline, ProQuest and PubMed) and one register (Cochrane CENTRAL) were searched. 476 records were identified and duplicates removed. 88 records progressed to abstract screening and 73 were excluded. Following review of complete references, 8 studies were deemed eligible. Results. Complication rates were shown to be high in our systematic review. Over one-fifth of patients require re-operation, predominantly for removal of symptomatic for failed hardware. Average infection rate was 11.95% which is higher than rates reported in the literature for better hosts. Nevertheless, reported mortality was low at 0.8% and thromboembolic events only occurred in 2% of patients. Average range of movement achieved following operative fixation was approximately 124 degrees. Upon further literature review, novel non-operative treatment options have shown acceptable results in low-demand patients, including abandoning weight-bearing restrictions altogether and non-operatively treating patients with fracture gaps greater than 1cm. Regarding operative management, suture/cable TBW has been investigated as a viable option with good results in recent years since the materials used show comparable biomechanics to stainless steel. Additionally, ORIF with locking plates have shown favourable results and have enabled aggressive post-operative rehabilitation protocols. TBW with metallic implants has shown higher complication rates, especially for anterior knee pain, reoperation and poor functional outcomes. Conclusion. There is sparse literature regarding patella fracture in the poor host. Nevertheless, it is clear that ORIF produces better outcomes than conservative treatment but the optimal technique for patella ORIF remains unclear. TBW with metallic implants should not remain the standard technique for ORIF; low-profile plates of suture TBW are more attractive solutions. Non-operative treatment may be considered for low-demand individuals however any form of patellectomy should be avoided if possible. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 31 - 31
17 Nov 2023
Warren J Cowie R Jennings L Wilcox R Fermor H
Full Access

Abstract. Objectives. The aim of this study was to develop an in vitro GAG-depleted patella model and assess the biomechanical effects following treatment with a SAP:CS self-assembling hydrogel. Methods. Porcine patellae (4–6 month old) were harvested and subject to 0.1% (w/v) sodium dodecyl sulfate (SDS) washes to remove GAGs from the cartilage. Patellae were GAG depleted and then treated by injection with SAP (∼ 6 mM) and CS (10 mg) in Ringer's solution through a 30G needle. Native, GAG depleted and SAP:CS treated patellae were tested through static indentation testing, using 15g load, 5mm indenter over 1hr period. The degree of deformation of each group was assessed and compared (Mann-Whitney, p<0.05). Native, GAG depleted, sham (saline only) and SAP:CS treated paired patellae and femurs were additionally characterized tribologically through sequential wear testing when undergoing a walking gait profile (n=6 per group). The cartilage surfaces were assessed and compared (Mann-Whitney, p<0.05) using the ICRS scoring system, surface damage was illustrated through the application of Indian ink. Results. Static indentation tests indicated significant increase in indentation deformation of GAG depleted group compared to native group (n=6, p<0.01) and significant reduction in deformation of SAP:CS treated group compared to GAG depleted group (n=6, p<0.05). Sequential wear tests indicated a significant increase in the cartilage damage on the both surfaces of the patellofemoral joint in the GAG depleted group, compared to the native group (n=6, p<0.001), Following SAP:CS treatment, significant protection from damage was observed on femoral surface (n=6, p<0.005), with some non-significant reduction in damage on the patella surface. Sham injections showed no significant increase in damage compared to the native and treated samples. Conclusions. The ∼50% reduction of GAGs represented a moderate osteoarthritic patella cartilage model. This same loss transferred to the dynamic wear tests with significant changes in the damage on the femoral counter face associated with the GAG loss. SAP:CS treatment showed promise in restoring cartilage stiffness to treat Chondromalacia patella in static indentation tests. Sequential wear tests showed that the SAP:CS treatment protects the cartilage layer of both surfaces in the patellofemoral joint from damage in an extreme degeneration model. The sham injections showed that injecting cartilage with a 30G and saline does not cause any significant damage to the cartilage layer. Declaration of Interest. (a) fully declare any financial or other potential conflict of interest


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 23 - 23
4 Apr 2023
Stoffel K Zderic I Pastor T Woodburn W Castle R Penman J Saura-Sanchez E Gueorguiev B Sommer C
Full Access

Treatment of simple and complex patella fractures represents a challenging clinical problem. Controversy exists regarding the most appropriate fixation method. Tension band wiring, aiming to convert the pulling forces on the anterior aspect of the patella into compression forces across the fracture site, is the standard of care, however, it is associated with high complication rates. Recently, anterior variable-angle locking plates have been developed for treatment of simple and comminuted patella fractures. The aim of this study was to investigate the biomechanical performance of the novel anterior variable-angle locking plates versus tension band wiring used for fixation of simple and complex patella fractures. Sixteen pairs of human cadaveric knees were used to simulate either two-part transverse simple AO/OTA 34-C1 or five-part complex AO/OTA 34-C3 patella fractures by means of osteotomies, with each fracture model created in eight pairs. The complex fracture pattern was characterized with a medial and a lateral proximal fragment, together with an inferomedial, an inferolateral and an inferior fragment mimicking comminution around the distal patellar pole. The specimens with simple fractures were pairwise assigned for fixation with either tension band wiring through two parallel cannulated screws, or an anterior variable-angle locking core plate. The knees with complex fractures were pairwise treated with either tension band wiring through two parallel cannulated screws plus circumferential cerclage wiring, or an anterior variable-angle locking three-hole plate. Each specimen was tested over 5000 cycles by pulling on the quadriceps tendon, simulating active knee extension and passive knee flexion within the range from 90° flexion to full knee extension. Interfragmentary movements were captured by motion tracking. For both fracture types, the articular displacements, measured between the proximal and distal fragments at the central aspect of the patella between 1000 and 5000 cycles, together with the relative rotations of these fragments around the mediolateral axis were all significantly smaller following the anterior variable-angle locked plating compared with the tension band wiring, p < 0.01. From a biomechanical perspective, anterior locked plating of both simple and complex patella fractures provides superior construct stability versus tension band wiring


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 56 - 56
2 Jan 2024
Zderic I Warner S Stoffel K Woodburn W Castle R Penman J Saura-Sanchez E Helfet D Gueorguiev B Sommer C
Full Access

Treatment of both simple and complex patella fractures is a challenging clinical problem. The aim of this study was to investigate the biomechanical performance of recently developed lateral rim variable angle locking plates versus tension band wiring used for fixation of simple and complex patella fractures. Twelve pairs of human anatomical knees were used to simulate either two-part transverse simple AO/OTA 34C1 or five-part complex AO/OTA 34C3 patella fractures by means of osteotomies, with each fracture model created in six pairs. The complex fracture pattern was characterized by a medial and a lateral proximal fragment, together with an inferomedial, an inferolateral, and an inferior fragment mimicking comminution around the distal patellar pole. The specimens with simple fractures were pairwise assigned for fixation with either tension band wiring through two parallel cannulated screws, or a lateral rim variable angle locking plate. The knees with complex fractures were pairwise treated with either tension band wiring through two parallel cannulated screws plus circumferential cerclage wiring, or a lateral rim variable angle locking plate. Each specimen was tested over 5000 cycles by pulling on the quadriceps tendon, simulating active knee extension and passive knee flexion within the range of 90° flexion to full knee extension. Interfragmentary movements were captured via motion tracking. For both fracture types, the longitudinal and shear articular displacements measured between the proximal and distal fragments at the central patella aspect between 1000 and 5000 cycles, together with the relative rotations of these fragments around the mediolateral axis were all significantly smaller following the lateral rim variable angle locked plating compared with tension band wiring, p<0.01. Lateral rim locked plating of both simple and complex patella fractures provides superior construct stability versus tension band wiring under dynamic loading


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 45 - 45
1 Dec 2020
Dalal S Setia P Debnath A Guro R Kotwal R Chandratreya A
Full Access

Background. Recurrent patellar dislocation in combination with cartilage injures are difficult injuries to treat with confounding pathways of treatment. The aim of this study is to compare the clinical and functional outcomes of patients operated for patellofemoral instability with and without cartilage defects. Methods. 82 patients (mean age-28.8 years) with recurrent patellar dislocations, who underwent soft-tissue or bony procedures, were divided into 2 matched groups (age, sex, follow-up and type of procedure) of 41 each based on the presence or absence of cartilage defects in patella. Chondroplasty, microfracture, osteochondral fixation or Autologous Matrix-Induced Chondrogenesis(AMIC)-type procedures were done depending on the nature of cartilage injury. Lysholm, Kujala, Tegner and Subjective Knee scores of both groups were compared and analysed. Complications and return to theatre were noted. Results. With a mean follow-up of 8 years (2 years-12.3 years), there was a significant improvement observed in all the mean post-operative Patient Reported Outcome Measures (p<0.05) of both the groups, as compared to the pre-operative scores. Comparing the 2 groups, post-operative Lysholm, Kujala and Subjective knee scores were significantly higher in patients operated without cartilage defects (p<0.05). 3 patients operated for patellofemoral instability with cartilage defects had to undergo patellofemoral replacement in the long term. Odds ratio for developing complications is 2.6 for patients operated with cartilage defects. Conclusion. Although there is a significant improvement in the long term outcome scores of patients operated for recurrent patellar dislocation with cartilage defects, the results are significantly inferior as compared to those without cartilage defects, along with a higher risk of developing complications and returning to theatre


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XI | Pages 14 - 14
1 Apr 2012
Gupta S Augustine A Horey L Meek R Hullin M Mohammed A
Full Access

Anterior knee pain following primary total knee replacement (TKR) is a common problem with average reported rates in the literature of approximately 10%. Symptoms are frequently attributed to the patellofemoral joint, and the treatment of the patella during total knee replacement is controversial. There is no article in the literature that the authors know of that has specifically evaluated the effect of patella rim cautery on TKR outcome. This is a denervation technique that has historically been employed, with no evidence base. A prospective comparative cohort study was performed to compare the outcome scores of patients who underwent circumferential patella rim cautery, with those who did not. Patients who had undergone a primary TKR were identified from the unit's arthroplasty database. Two cohorts, who were age and gender matched, were established. None of the patients had their patella resurfaced, but all had a patellaplasty. The Low Contact Stress TKR (Depuy International) was used in all cases. The effect of circumferential patella rim cautery on the Oxford Knee Score (OKS) and the more anterior knee pain specific Patellar Score (PS) a minimum of 2 years post surgery was evaluated. Previous reports have suggested that a change of 5 points in the OKS represents a clinical difference. A sample size calculation based on an effect size of 5 points with 80% power and a p-value of 0.05 would require a minimum of 76 patients in each group. There were 94 patients who had undergone patellaplasty only, and 98 patients who had supplementary circumferential patella rim cautery during their primary TKR. The mean OKS were 34.61 and 33.29 respectively (p=0.41), while the PS scores were 21.03 and 20.87 (p=0.87). No statistically significant differences were noted between the groups for either outcome score. Patella rim cauterisation is unnecessary in primary TKR


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_30 | Pages 18 - 18
1 Aug 2013
Joseph J Fogg Q Dearing J
Full Access

The purpose of this study was to provide an anatomical explanation for the presence of medial proximal tibial pain in patients with patellar mal-tracking without identifiable medial tibio-femoral compartment or proximal tibial pathology. Using cadaveric dissection we were consistently able to identify a connection between the medial patella and the medial proximal tibia including the medial hamstrings and the posterior oblique expansion. This connection is independent of the inferior patello-tibial ligament and has not previously been described in either anatomical or orthopaedic literature. The dimensions of this medial patello-tibial connection were measured using a digital microscribe. This technique also facilitated the creation of a three dimensional virtual representation of the patello-tibial connection. In the clinical setting, patients presenting with medial proximal tibial pain who had patellar mal-tracking as identified by clinical examination and merchant radiographs underwent MRI scanning of the knee to exclude any intraarticular or proximal tibial pathology. In those patients with patellar mal-tracking that had no evidence of proximal tibial or medial compartment pathology identified, we were able to correlate the MRI finding of oedema based at the proximal medial aspect of the tibia with the cadaveric dissection findings mentioned previously. In such cases we would recommend that treatment of the medial proximal tibial pain should focus on managing the primary pathology of patella mal-tracking. In conclusion we present a newly identified medial patello-tibial ligamentous complex that can explain the presence of medial proximal tibial pain in patients with patellar mal-tracking and no other proximal tibial or medial compartment pathology


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVIII | Pages 10 - 10
1 Jun 2012
Huntley JS Frame MC McCaul J Little K Irwin GJ
Full Access

Rapid prototyping (RP), especially useful in surgical specialities involving critical three-dimensional relationships, has recently become cheaper to access both in terms of file processing and commercially available printing resources. One potential problem has been the accuracy of models generated. We performed computed tomography on a cadaveric human patella followed by data conversion using open source software through to selective-laser-sintering of a polyamide model, to allow comparative morphometric measurements (bone v. model) using vernier calipers. Statistical testing was with Student's t-test. No significant differences in the dimensional measurements could be demonstrated. These data provide us with optimism as to the accuracy of the technology, and the feasibility of using RP cheaply to generate appropriate models for operative rehearsal of intricate orthopaedic procedures


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 12 | Pages 1710 - 1716
1 Dec 2010
Chia W Pan R Tseng F Chen Y Feng C Lee H Chang D Sytwu H

The patellofemoral joint is an important source of symptoms in osteoarthritis of the knee. We have used a newly designed surgical model of patellar strengthening to induce osteoarthritis in BALB/c mice and to establish markers by investigating the relationship between osteoarthritis and synovial levels of matrix metalloproteinases (MMPs). Osteoarthritis was induced by using this microsurgical technique under direct vision without involving the cavity of the knee. Degeneration of cartilage was assessed by the Mankin score and synovial tissue was used to determine the mRNA expression levels of MMPs. Irrigation fluid from the knee was used to measure the concentrations of MMP-3 and MMP-9. Analysis of cartilage degeneration was correlated with the levels of expression of MMP.

After operation the patellofemoral joint showed evidence of mild osteoarthritis at eight weeks and further degenerative changes by 12 weeks. The level of synovial MMP-9 mRNA correlated with the Mankin score at eight weeks, but not at 12 weeks. The levels of MMP-2, MMP-3 and MMP-14 mRNA correlated with the Mankin score at 12 weeks. An increase in MMP-3 was observed from four weeks up to 16 weeks. MMP-9 was notably increased at eight weeks, but the concentration at 16 weeks had decreased to the level observed at four weeks.

Our observations suggest that MMP-2, MMP-3 and MMP-14 could be used as markers of the progression of osteoarthritic change.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 109 - 109
11 Apr 2023
Amado I Hodgkinson T Mathavan N Murphy C Kennedy O
Full Access

Post-traumatic osteoarthritis (PTOA) is a subset of osteoarthritis, which occurs secondary to traumatic joint injury which is known to cause pathological changes to the osteochondral unit. Articular cartilage degradation is a primary hallmark of OA, and is normally associated with end-stage disease. However, subchondral bone marrow lesions are associated with joint injury, and may represent localized bone microdamage. Changes in the osteochondral unit have been traditionally studied using explant models, of which the femoral-head model is the most common. However, the bone damage caused during harvest can confound studies of microdamage. Thus, we used a novel patellar explant model to study osteochondral tissue dynamics and mechanistic changes in bone-cartilage crosstalk. Firstly, we characterized explants by comparing patella with femoral head models. Then, the patellar explants (n=269) were subjected to either mechanical or inflammatory stimulus. For mechanical stimulus 10% strain was applied at 0.5 and 1 Hz for 10 cycles. We also studied the responses of osteochondral tissues to 10ng/ml of TNF-α or IL-1β for 24hrs. In general the findings showed that patellar explant viability compared extremely well to the femoral head explant. Following IL-1β or TNF-α treatment, MMP13, significantly increased three days post exposure, furthermore we observed a decrease in sulfate glycoaminoglycan (sGAG) content. Bone morphometric analysis showed no significant changes. Contrastingly, mechanical stimulation resulted in a significant decrease sGAG particularly at 0.5Hz, where an increase in MMP13 release 24hrs post stimulation and an upregulation of bone and cartilage matrix degradation markers was observed. Furthermore, mechanical stimulus caused increases in TNF-α, MMP-8, VEGF expression. In summary, this study demonstrates that our novel patella explant model is an excellent system for studying bone-cartilage crosstalk, which responds well to both mechanical and inflammatory stimulus and is thus of great utility in the study of PTOA


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 75 - 75
17 Apr 2023
Tierney L Kuiper J Williams M Roberts S Harrison P Gallacher P Jermin P Snow M Wright K
Full Access

The objectives of the study were to investigate demographic, injury and surgery/treatment-associated factors that could influence clinical outcome, following Autologous Chondrocyte Implantation (ACI) in a large, “real-world”, 20 year longitudinally collected clinical data set. Multilevel modelling was conducted using R and 363 ACI procedures were suitable for model inclusion. All longitudinal post-operative Lysholm scores collected after ACI treatment and before a second procedure (such as knee arthroplasty but excluding minor procedures such as arthroscopy) were included. Any patients requiring a bone graft at the time of ACI were excluded. Potential predictors of ACI outcome explored were age at the time of ACI, gender, smoker status, pre-operative Lysholm score, time from surgery, defect location, number of defects, patch type, previous operations, undergoing parallel procedure(s) at the time of ACI, cell count prior to implantation and cell passage number. The best fit model demonstrated that for every yearly increase in age at the time of surgery, Lysholm scores decreased by 0.2 at 1-year post-surgery. Additionally, for every point increase in pre-operative Lysholm score, post-operative Lysholm score at 1 year increased by 0.5. The number of cells implanted also impacted on Lysholm score at 1-year post-op with every point increase in log cell number resulting in a 5.3 lower score. In addition, those patients with a defect on the lateral femoral condyle (LFC), had on average Lysholm scores that were 6.3 points higher one year after surgery compared to medial femoral condyle (MFC) defects. Defect grade and location was shown to affect long term Lysholm scores, those with grade 3 and patella defects having on average higher scores compared to patients with grade 4 or trochlea defects. Some of the predictors identified agree with previous reports, particularly that increased age, poorer pre-operative function and worse defect grades predicted poorer outcomes. Other findings were more novel, such as that a lower cell number implanted and that LFC defects were predicted to have higher Lysholm scores at 1 year and that patella lesions are associated with improved long-term outcomes cf. trochlea lesions


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 120 - 120
1 Mar 2021
Grammens J Peeters W Van Haver A Verdonk P
Full Access

Trochlear dysplasia is a specific morphotype of the knee, characterized by but not limited to a specific anatomy of the trochlea. The notch, posterior femur and tibial plateau also seem to be involved. In our study we conducted a semi-automated landmark-based 3D analysis on the distal femur, tibial plateau and patella. The knee morphology of a study population (n=20), diagnosed with trochlear dysplasia and a history of recurrent patellar dislocation was compared to a gender- and age-matched control group (n=20). The arthro-CT scan-based 3D-models were isotropically scaled and landmark-based reference planes were created for quantification of the morphometry. Statistical analysis was performed to detect shape differences between the femur, tibia and patella as individual bone models (Mann-Whitney U test) and to detect differences in size agreement between femur and tibia (Pearson's correlation test). The size of the femur did not differ significantly between the two groups, but the maximum size difference (scaling factor) over all cases was 35%. Significant differences were observed in the trochlear dysplasia (TD) versus control group for all conventional parameters. Morphometrical measurements showed also significant differences in the three directions (anteroposterior (AP), mediolateral (ML), proximodistal (PD)) for the distal femur, tibia and patella. Correlation tests between the width of the distal femur and the tibial plateau revealed that TD knees show less agreement between femur and tibia than the control knees; this was observed for the overall width (TD: r=0.172; p=0.494 - control group: r=0.636; p=0.003) and the medial compartment (TD: r=0.164; p=0.516 - control group: r=0.679; p=0.001), but not for the lateral compartment (TD: r=0.512; p=0.029 - control: r=0.683; p=0.001). In both groups the intercondylar eminence width was strongly correlated with the notch width (TD: r=0.791; p=0.001 - control: r=0.643; p=0.002). The morphology of the trochleodysplastic knee differs significantly from the normal knee by means of an increased ratio of AP/ML width for both femur and tibia, a smaller femoral notch and a lack of correspondence in mediolateral width between the femur and tibia. More specifically, the medial femoral condyle shows no correlation with the medial tibial plateau


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 118 - 118
2 Jan 2024
Stroobant L Verstraete M Onsem S Victor J Chevalier A
Full Access

Numerous papers present in-vivo knee kinematics data following total knee arthroplasty (TKA) from fluoroscopic testing. Comparing data is challenging given the large number of factors that potentially affect the reported kinematics. This paper aims at understanding the effect of following three different factors: implant geometry, performed activity and analysis method. A total of 30 patients who underwent TKA were included in this study. This group was subdivided in three equal groups: each group receiving a different type of posterior stabilized total knee prosthesis. During single-plane fluoroscopic analysis, each patient performed three activities: open chain flexion extension, closed chain squatting and chair-rising. The 2D fluoroscopic data were subsequently converted to 3D implant positions and used to evaluate the tibiofemoral contact points and landmark-based kinematic parameters. Significantly different anteroposterior translations and internal-external rotations were observed between the considered implants. In the lateral compartment, these differences only appeared after post-cam engagement. Comparing the activities, a significant more posterior position was observed for both the medial and lateral compartment in the closed chain activities during mid-flexion. A strong and significant correlation was found between the contact-points and landmarks-based analyses method. However, large individual variations were also observed, yielding a difference of up to 25% in anteroposterior position between both methods. In conclusion, all three evaluated factors significantly affect the obtained tibiofemoral kinematics. The individual implant design significantly affects the anteroposterior tibiofemoral position, internal-external rotation and timing of post-cam engagement. Both kinematics and post-cam engagement additionally depend on the activity investigated, with a more posterior position and associated higher patella lever arm for the closed chain activities. Attention should also be paid to the considered analysis method and associated kinematics definition: analyzing the tibiofemoral contact points potentially yields significantly different results compared to a landmark-based approach


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 78 - 78
1 Mar 2021
Kandhari V Grasso S Twiggs J
Full Access

Abstract. Background. Accurate analysis of the patellar resurfacing is essential to better understand the etiology of patella-femoral problems and dissatisfaction following total knee arthroplasty (TKA). In the current published literature patellar resurfacing is analysed using 2D radiographs. With use of radiographs there is potential for error due to differences in limb positioning, projection, anatomic variability and difficulties in appreciating the cement-bone interface. So, we have developed a CT Scan based 3D modelled technique for accurate evaluation of patellar resurfacing. Methods. This technique for analyses of patellar resurfacing is based on the pre-operative and pos-operative CT Scan data of the patients who underwent TKA with patellar resurfacing. In the first step, accurately landmarked 3D models of pre-op patellae were created from pre-operative CT Scan data in ScanIP software. This model was imported in Geomagic design software and computational model of post-op patella was created. This was further analysed to determine the inclination of the patellar resection plane, patellar button positioning and articular volumetric restoration of the patella. Reliability and reproducibility of the technique was tested by comparing 3 sets of 10 measurements done by 2 independent investigators on 30 computational models of patellae derived from the data of randomly chosen 30 TKA patients. Results. The developed technique for analyses of patellar resurfacing is reliable and reproducible. The intraclass correlation co-efficient was >0.90 for the 10 measurements performed by two investigators. Conclusions. This technique can be used by surgeons and engineers for accurate analysis of the patellar resurfacing especially in patients with persistent patello-femoral problems after TKA. Declaration of Interest. (a) fully declare any financial or other potential conflict of interest


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 62 - 62
1 Nov 2018
Nwawka OK Lin B Toresdahl B Allen A Drakos M
Full Access

This study of collegiate basketball players evaluated change over time (COT) in ultrasound shear wave (SW) elastography metrics across the basketball season, and correlated to morphologic changes on conventional ultrasound imaging, and VISA-P scores. In eleven male collegiate basketball players (mean age 19, age range 18–21), patella tendon (PT) ultrasound and SW elastography of both knees were performed at pre-season and post-season time points, and players reported their VISA-P scores throughout the season. Patella tendinopathy grade and SW metrics were correlated to VISA-P scores using Spearman correlation coefficients. Paired t-test was used to assess differences in mean SW metrics at pre-and post-season timepoints, accounting for leg dominance. 6 of 11 players (54.5%) had baseline patella tendinopathy on ultrasound progressing in 4 players. The mean change in VISA-P score was 15.18 (+/−8.55). No significant correlation was seen between ultrasound grades of tendinopathy and VISA-P. Pre-season SW velocities did not significantly correlate with baseline VISA-P scores. Post-season SW values and SW COT demonstrated strong correlation with change in VISA-P score in dominant and non-dominant knees. Although not statistically significant, there was a trend towards higher SW velocity for tendinopathy in both dominant and non-dominant knees at both study visits. SW metrics of the PT correlated to change in VISA-P scores in the dominant and non-dominant knees, whereas conventional ultrasound grades of patella tendinopathy did not. There was a trend towards higher SW velocities in patella tendinopathy which may indicate detection of change in intrinsic tissue stiffness


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 2 - 2
1 Dec 2021
Sanderson W Foster R Edwards J Wilcox R Herbert A
Full Access

Abstract. Objectives. The patella tendon (PT) is commonly used as a graft material for anterior cruciate ligament reconstruction (ACLR). The function of the graft is to restore the mechanical behaviour of the knee joint. Therefore, it is essential that a robust methodology be developed for the mechanical testing of the PT, as well as for the tissue engineered grafts derived from this tissue. Our objectives were to (1) survey the literature, in order to define the state-of-the-art in mechanical testing of the PT, highlighting the most commonly used testing protocols, and (2) conduct validation studies using porcine PT to compare the mechanical measurements obtained using different methodological approaches. Methods. A PubMed search was performed using a boolean search term to identify publications consisting of PT tensile testing, and limited to records published in the past ten years (2010–2020). This returned a total of 143 publications. A meta-analysis was undertaken to quantify the frequency of commonly used protocol variations (pre-conditioning regime, strain rates, maximum strain, etc.). Validation studies were performed on porcine PT (n=4) using Instron tensile testing apparatus to examine the effect of preconditioning on low-strain (toe-region) mechanical properties. Results. Ramp-to-failure testing was found to be most commonly performed (included in over 90 % of publications), followed by stress relaxation and cyclic testing (∼25 %). Preconditioning was most commonly cyclic (27 %), involving 10–100 cycles. Validation studies show the number of cycles and duration of preconditioning, has no significant effect on toe region transition strain, transition stress, or sensitivity to increasing strain. Conclusions. There is a lack of standardisation in the mechanical testing of PT, which could have implications for the comparison of studies conducted using different protocols. However, variations in preconditioning regime have no effect on low-strain mechanical properties


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 3 | Pages 408 - 412
1 Mar 2007
Ma H Lu Y Kwok T Ho F Huang C Huang C

One of the most controversial issues in total knee replacement is whether or not to resurface the patella. In order to determine the effects of different designs of femoral component on the conformity of the patellofemoral joint, five different knee prostheses were investigated. These were Low Contact Stress, the Miller-Galante II, the NexGen, the Porous-Coated Anatomic, and the Total Condylar prostheses. Three-dimensional models of the prostheses and a native patella were developed and assessed by computer. The conformity of the curvature of the five different prosthetic femoral components to their corresponding patellar implants and to the native patella at different angles of flexion was assessed by measuring the angles of intersection of tangential lines. The Total Condylar prosthesis had the lowest conformity with the native patella (mean 8.58°; 0.14° to 29.9°) and with its own patellar component (mean 11.36°; 0.55° to 39.19°). In the other four prostheses, the conformity was better (mean 2.25°; 0.02° to 10.52°) when articulated with the corresponding patellar component. The Porous-Coated Anatomic femoral component showed better conformity (mean 6.51°; 0.07° to 9.89°) than the Miller-Galante II prosthesis (mean 11.20°; 5.80° to 16.72°) when tested with the native patella. Although the Nexgen prosthesis had less conformity with the native patella at a low angle of flexion, this improved at mid (mean 3.57°; 1.40° to 4.56°) or high angles of flexion (mean 4.54°; 0.91° to 9.39°), respectively. The Low Contact Stress femoral component had the best conformity with the native patella (mean 2.39°; 0.04° to 4.56°). There was no significant difference (p > 0.208) between the conformity when tested with the native patella or its own patellar component at any angle of flexion. The geometry of the anterior flange of a femoral component affects the conformity of the patellofemoral joint when articulating with the native patella. A more anatomical design of femoral component is preferable if the surgeon decides not to resurface the patella at the time of operation


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 105 - 105
1 Nov 2021
Al-Rub ZA Tyas B Singisetti K
Full Access

Introduction and Objective. Evidence in literature is contradicting regarding outcomes of total knee arthroplasty (TKA) in post-traumatic osteoarthritis (PTOA) and whether they are inferior to TKA in primary osteoarthritis (OA). The aim of this review was to find out if any difference exists in the results of TKA between the two indications. Materials and Methods. The electronic databases MEDLINE, EMBASE, The Cochrane Collaboration, and PubMed were searched and screened in duplicate for relevant studies. The selected studies were further subjected to quality assessment using the modified Coleman method. The primary outcome measure was patient reported outcome, and secondary outcome measures were infection, revision, stiffness, and patella tendon rupture. Results. A total of 18 studies involved 1129 patients with a mean age of 60.6 years (range 45.7–69) and follow up of 6.3 years. The time interval from index injury to TKA was 9.1 years. Knee Society Score (KSS) in PTOA reported in 12/18 studies showed functional improvement from 42.5 to 70 post-TKA exceeding minimally clinically important difference. In TKA for primary OA vs PTOA, deep peri-prosthetic joint infection (PJI) was reported in 1.9% vs 5.4% of patients, whilst revision of prosthesis at an average of 6 years post-operatively was performed in 2.6 vs 9.7% of patients. Conclusions. TKA is a successful treatment option for PTOA. However, the risk of significant complications like PJI and implant failure requiring revision is higher than primary OA cases. Patients should be counselled about those risks. Further well-designed comparative cohort-matched studies are needed to compare outcomes between the two populations


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 40 - 40
1 Jan 2019
Choudhury A Ejindu V Hing C
Full Access

A risk factor for patellofemoral instability is trochlear dysplasia. Trochleoplasty is a surgical procedure used to reshape the trochlear groove to improve patellar stability. This study seeks to compare pre-op MRI measurements and post operative MRI measurements for patients who have undergone trochleoplasty in correlation with their clinical outcomes scores. Data was collected from a database of patients known to have trochlear dysplasia who underwent trochleoplasty. Radiological Data was collected pre-op and subsequent post op MRI data collected included TT-TG, Patella Tilt, IS, sulcus angle. Data score sheets pre-op and post op trochleoplasty completed by patients were also collected. 10 patients had pre and post op MRI's documented. 80%(8/10) females and 20%(2/10) males, average age of 30 years old (range 23 – 32 years old). Average MRI pre-op scores: IS ratio: 1.2, Patella tilt: 24.14, sulcus angle 160.13, and TT-TG distance of 16.94. 1 year average MRI post-op scores: IS ratio: 1.28, Patella tilt 15.56, sulcus angle 148.66 and TT-TG distance 16.78. 1 year post op Kujala and Norwich instability scores patient reported improved stability, function and confidence post op compared to pre-op. Subjective and objective scores reflected an improvement of stability. MRI demonstrated a deeper trochlear groove post-operatively which should provide resistance against lateral patella movement and patellar dislocations. TT-TG pre and post op remained constant. Pre op and post op Kujala scores reflected improved function. The Norwich instability scores pre and post op reflected satisfaction of treatment. There are not a lot of studies published on trochleoplasty. Based on this study it is clear that patients with patellofemoral instability with severe trochlear dysplasia will benefit from trochleoplasty. The sample size of the data analysis was only 10. However it reflected that function 1 year post procedure remained stable


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 106 - 106
1 Nov 2021
Franceschetti E De Angelis D'Ossat G Palumbo A Paciotti M Franceschi F Papalia R
Full Access

Introduction and Objective. TKA have shown both excellent long-term survival rate and symptoms and knee function improvement. Despite the good results, the literature reports dissatisfaction rates around 20%. This rate of dissatisfaction could be due to the overstuff that mechanically aligned prostheses could produce during the range of motion. Either size discrepancy between bone resection and prosthetic component and constitutional mechanical tibiofemoral alignment (MTFA) alteration might increase soft tissue tension within the joint, inducing pain and functional limitation. Materials and Methods. Total knee arthroplasties performed between July 2019 and September 2020 were examined and then divided into two groups based on the presence (Group A) or absence (Group B) of patellofemoral overstuff, defined as a thickness difference of more than 2 mm between chosen component and bone resection performed, taking into account at least one of the following: femoral medial and lateral condyle, medial or lateral trochlea and patella. Based on pre and post-operative MTFA measurements, Group A was further divided into two subgroups whether the considered alignment was modified or not. Patients were assessed pre-operatively and at 6 months post-op using the Knee Society Score (KSS), Oxford Knee Score (OKS), Forgotten Joint Score (FJS), Visual Analogue Scale (VAS) and Range of Motion (ROM). Results. One hundred total knee arthroplasties were included in the present study, 69 in Group A and 31 in group B. Mean age and BMI of patients was respectively 71 and 29.2. The greatest percentage of Patellofemoral Overstuff was found at the distal lateral femoral condyle. OKS, KSS functional score, and FJS were statistically significant higher in patients without Patellofemoral Overstuff. Therefore, Group A patients with a non-modified MTFA demonstrated statistically significant better KSS, ROM and FJS. Conclusions. Patellofemoral Overstuff decrease post-operative clinical scores in patients treated with TKA. The conventional mechanically aligned positioning of TKA components might be the primary cause of prosthetic overstuffing leading to worsened clinical results. Level of evidence: III; Prospective Cohort Observational study;