Key Points:. Historically, 22.25, 26, 28, or 32 mm metal femoral heads were used in primary total hip arthroplasty, but innovations in materials now permit head sizes 36 mm or larger. Stability and wear of primary total hip arthroplasty are related to the diameter and material of the femoral head. Larger diameter femoral heads are associated with increased joint stability through increases in arc range of motion and excursion distance prior to dislocation. Fixation of the acetabular component may be related to the size of the femoral head, with increased frictional torque associated with large diameter heads and certain polyethylene. Linear wear of highly crosslinked polyethylenes seems unrelated to femoral head diameter, but larger heads have been reported to have higher volumetric wear. Mechanically assisted crevice corrosion at the connection between the modular femoral head and neck may be associated with the femoral head size and material. Cobalt chromium alloy, alumina ceramic composite, or
Uncemented metal-on-polyethylene total hip arthroplasties (THAs) have had a modular cobalt-chrome alloy head since their introduction in the early 1980's. Retrieval analysis studies and case reports in the early 1990's first reported corrosion between the femoral stem trunnion (usually titanium alloy) and cobalt-chrome alloy femoral head. However, then this condition seemed to disappear for about two decades? There are now numerous recent case series of this problem after metal-on-polyethylene THA, with a single taper or dual taper modular femoral component. Metal ion elevation, corrosion debris, and effusion are caused by mechanically assisted crevice corrosion (MACC). These patients present with diffuse hip pain, simulating trochanteric bursitis, iliopsoas tendinitis, or even deep infection. Trunnion corrosion, with adverse local tissue reaction, is a diagnosis of exclusion, after infection, loosening, or fracture. The initial lab tests recommended are: ESR, CRP, and serum cobalt and chromium ions. With a metal-on-polyethylene THA, a cobalt level > 1ppb is abnormal. Plain radiographs are usually negative, but may show calcar osteolysis or acetabular erosion or cyst. MARS MRI may be the best imaging study to confirm the diagnosis. Hip aspiration for culture and cell-count may be necessary. The operative treatment is empiric, with debridement, and head exchange with a ceramic head-titanium sleeve (or
The advent of highly cross-linked polyethylene has resulted in improved wear rates and reduced osteolysis with at least intermediate follow-up when compared to conventional polyethylene. However, the role of alternative femoral head bearing materials in decreasing wear is less clear. The purpose of this study was to determine in-vivo polyethylene wear rates across ceramic, Oxinium, and cobalt chrome femoral head articulations. A review of our institutional database was performed to identify patients who underwent a total hip arthroplasty using either ceramic or