Osteoporosis has long been associated with weak bones but recent studies have shown that bone tissue mineral becomes more heterogeneous and the expression of mechanosensors are altered during estrogen deficiency in an animal model of osteoporosis. However, whether these changes occur as a primary response to estrogen deficiency is unknown. In this study we investigate whether matrix production and mineralisation by mechanically-stimulated osteoblasts are impaired as a direct consequence of estrogen depletion. Osteoblast-like MC3T3-E1 cells were cultured for 14 days with 10. −8. M of 17β-estradiol and subsequently cultured with osteogenic media only, or supplemented with estrogen or an estrogen antagonist (Fulvestrant, 10. −7. M). Physiological shear stress (1Pa) was applied using an orbital shaker (290rpm, 40min/day), which allows long-term culture and induces oscillatory flow on cells. Osteoblasts phenotype, extracellular matrix (ECM), mineralisation and mechanosensors were tracked by qRT-PCR (Runx2, Col1a1, Col1a2, Cox2, Bglap2, FN1), by biochemical assays (ALP activity, DNA and calcium content), by immunostaining (integrin α. v. , BSP2, fibronectin) and by labelling with calcein the calcium. The results of this study demonstrate that after 7 days, estrogen depleted cells had less integrin α. v. mechanosensors compared to those that received continuous estrogen treatment. By 14 days the ECM formation (calcium, fibronectin) by osteoblasts was altered under estrogen depletion, when compared to cells that were cultured continuously with estrogen. This study provides evidence of changes in osteoblast behaviour under estrogen depletion, which might explain the alteration in tissue mineral content and the decrease of integrins observed previously in
Bone strength is influenced by bone quality besides its density. This study aimed to evaluate the effects of teriparatide on changes of bone strength as well as trabecular and cortical bone microstructures at femoral neck in female
The treatment of osteoporotic fractures is a major challenge, and the enhancement of healing is critical as a major goal in modern fracture management. Most osteoporotic fractures occur at the metaphyseal bone region but few models exist and the healing is still poorly understood. A systematic review was conducted to identify and analyse the appropriateness of current osteoporotic metaphyseal fracture animal models. A literature search was performed on the Pubmed, Embase, and Web of Science databases, and relevant articles were selected. A total of 19 studies were included. Information on the animal, induction of osteoporosis, fracture technique, site and fixation, healing results, and utility of the model were extracted.Objectives
Materials and Methods
This study aims to assess the correlation of CT-based structural
rigidity analysis with mechanically determined axial rigidity in
normal and metabolically diseased rat bone. A total of 30 rats were divided equally into normal, ovariectomized,
and partially nephrectomized groups. Cortical and trabecular bone
segments from each animal underwent micro-CT to assess their average
and minimum axial rigidities using structural rigidity analysis.
Following imaging, all specimens were subjected to uniaxial compression
and assessment of mechanically-derived axial rigidity.Objectives
Methods