Macrophages (Mφ) are immune cells that play a crucial role in both innate and adaptive immunity as they are involved in a wide range of physiological and pathological processes. Depending on the microenvironment and signals present, Mφ can polarize into either M1 or M2 phenotypes, with M1 macrophages exhibiting pro-inflammatory and cytotoxic effects, while M2 macrophages having immunosuppressive and tissue repair properties. Macrophages have been shown to play key roles in the development and progression or inhibition of various diseases, including cancer. For example, macrophages can stimulate tumor progression by promoting immunosuppression, angiogenesis, invasion, and metastasis. This work aimed to investigate the effect of extracellular vesicles (EVs)-derived from polarized macrophages on an
Summary Statement. In this study we suggested a possible role of prion proteins genes in
Summary Statement. Combination of sorafenib with irradiation achieved synergistic effect with dose reduction in both 143B and HOS cell lines. This demonstrated the potential application of sorafenib in the treatment of
Summary. Reciprocal metabolic reprogramming of MSCs and
Our goal is to repurpose drugs to block the growth of lung metastases, the lethal process in
Summary Statement. RANK is expressed in 18% of human
We undertook a study of the anti-tumour effects of hyperthermia, delivered via magnetite cationic liposomes (MCLs), on local tumours and lung metastases in a mouse model of
We evaluated the possible induction of a systemic immune response to increase anti-tumour activity by the re-implantation of destructive tumour tissue treated by liquid nitrogen in a murine
Concomitant tumour resistance (CTR) is a unique phenomenon in which animals harbouring large primary tumours are resistant to the growth of smaller metastatic tumours by systemic angiogenic suppression. To examine this clinically, in ten patients with
Bone tumours may recur locally even after wide surgical excision and systemic chemotherapy. Local control of growth may be accomplished by the addition of cytostatic drugs such as methotrexate (MTX) to bone cement used to fill the defect after surgery and to stabilise the reconstructive prosthesis. We have studied the elution kinetics of MTX and its solvent N-methyl-pyrrolidone (NMP) from bone cement and their biological activities in five cell lines of
Metastatic
The glycolytic-based metabolism of cancers promotes an acidic microenvironment that is responsible for increased aggressiveness. However, the effects of acidosis on tumour metabolism have been almost unexplored, and the metabolic adaptation of cancer cells to acidosis has never been compared with the metabolic response of normal cells. In this study, to pinpoint for the first time the different metabolic profiles between
Residual tumor cells left in the bone defect after malignant bone tumor resection can result in local tumor recurrence and high mortality. Therefore, ideal bone filling materials should not only aid bone reconstruction or regeneration, but also exert local chemotherapeutic efficacy. However, common bone substitutes used in clinics are barely studied in research for local delivery of chemotherapeutic drugs. Here, we aimed to use facile manufacturing methods to render polymethylmethacrylate (PMMA) cement and ceramic granules suitable for local delivery of cisplatin to limit bone tumor recurrence. Porosity was introduced into PMMA cement by adding 1-4% carboxymethylcellulose (CMC) containing cisplatin, and chemotherapeutic activity was rendered to two types of granules via adsorption. Then, mechanical properties, porosity, morphology, drug release kinetics, ex vivo reconstructive properties of porous PMMA and in vitro anti-cancer efficacy against
Bone tissue is known to possess an intrinsic regeneration potential. However, in cases of major injury, trauma, and disease, bone loss is present, and the regeneration potential of the tissue is often impaired. The process of bone regeneration relies on a complex interaction of molecules. MicroRNAs (miRNA) are small, non-coding RNAs that inhibit messenger RNAs (mRNA). One miRNA can inhibit several mRNAs and one mRNA can be inhibited by several miRNAs. Functionally, miRNAs regulate the entire proteome via the local inhibition of translation. In fact, miRNA modulation has been shown to be involved in several musculoskeletal diseases. 1. In those pathologies, they modulate the transcriptional activity of mRNAs important for differentiation, tissue-specific activity, extracellular matrix production, etc. Because of their function in inhibiting translation, miRNAs are being researched in many diseases and are already being used for interventional treatment. 2. Bone tissue and its related conditions have been widely investigated up to this day. 1,3. This talk will focus on the relevancy of miRNAs to bone tissue, its homeostasis, and disease. After, examples will be given of how miRNAs can be used in bone regeneration and diseases such as osteoporosis and
Reducing wear of endoprosthetic implants is still an important goal in order to increase the life time of the implant. Endoprosthesis failure can be caused by many different mechanisms, such as abrasive wear, corrosion, fretting or foreign body reactions due to wear accumulation. Especially, modular junctions exhibit high wear rates and corrosion due to micromotions at the connection of the individual components. The wear generation of cobalt-chromium-molybdenum alloys (CoCrMo) is strongly influenced by the microstructure. Therefore, the aim of this work is to investigate the subsurface phase transformation by deep rolling manufacturing processes in combination with a “sub-zero” cooling strategy. We analyzed the influence on the phase structure and the mechanical properties of wrought CoCr28Mo6 alloy (ISO 5832-12) by a deep rolling manufacturing process at various temperatures (+25°C,-10°C,-35°C) and different normal forces (700N and 1400N). Surface (S. a. ,S. z. ) and subsurface characteristics (residual stress) as well as biological behavior were investigated for a potential implant application. We showed that the microstructure of CoCr28Mo6 wrought alloy changes depending on applied force and temperature. The face centered cubic (fcc) phase could be transformed to a harder hexagonal-close-packed (hcp) phase structure in the subsurface. The surface could be smoothed (up to S. a. = 0.387 µm±0.185 µm) and hardened (≥ 700 HV 0.1) at the same time. The residual stress was increased by more than 600% (n=3). As a readout for metabolic activity of MonoMac (MM6) and