Introduction. Primary stability is an important factor for long-term implant survival in total hip arthroplasty. In revision surgery, implant fixation becomes especially challenging due the acetabular bone defects, which are often present. Previous studies on primary stability of revision components often applied simplified geometrical defect shapes in a variety of sizes and locations. The objectives of this study were to (1) develop a realistic defect model in terms of defect volume and shape based on a clinically existing acetabular bone defect, (2) develop a surrogate acetabular test model, and (3) exemplarily apply the developed approach by testing the primary stability of a pressfit-cup with and without bone graft substitute (BGS). Materials & Methods. Based on clinical computed tomography data and a method previously published [1], volume and shape information of a representative defect, chosen in consultation with four senior hip revision surgeons, was derived. Volume and shape of the representative defect was approximated by nine reaming procedures with hemispherical acetabular reamers, resulting in a simplified defect with comparable volume (18.9 ml original vs. 18.8 ml simplified) and shape. From this simplified defect (Defect D), three additional defect models (Defect A, B, C) were derived by excluding certain reaming procedures, resulting in four defect models to step-wise test different acetabular revision components. A surrogate acetabular model made of 20 PCF polyurethane foam with the main support structures was developed [2]. For the exemplary test, three series for Defect A were defined: Native (acetabulum without defect), Empty (defect acetabulum without filling), Filled (defect acetabulum with BGS filling). All series were treated with a pressfit-cup and subjected to dynamic axial load in direction of maximum resultant force during level walking. Minimum load was 300 N and maximum load was increased step-wise from 600 N to 3000 N. Total relative motion between cup and foam, consisting of inducible displacement and migration, was assessed with the
INTRODUCTION. Deformation of modular acetabular press-fit shells is a topic of much interest for surgeons and manufacturer. Such modular components utilise a titanium shell with a liner manufactured from metal, polyethylene or ceramic. Initial fixation is achieved through a press-fit between shell and acetabulum with the shell mechanically deforming upon insertion. Shell deformation may disrupt the assembly process of inserting the bearing liner into the acetabular shell for modular systems. This may adversely affect the integrity and durability of the components and the tribology of the bearing. OBJECTIVE. Most clinically relevant data to quantify and understand such shell deformation can be achieved by cadaver measurements. ATOS Triple Scan III was identified as a measurement system with the potential to perform those measurements. The study aim was to validate an ATOS Triple Scan III
To develop a useful surgical navigation system, accurate determination of bone coordinates and thorough understanding of the knee kinematics are important. In this study, we have verified our algorithm for determination of bone coordinates in a cadaver study using skeletal markers, and at the same time, we also attempted to obtain a better understanding of the knee kinematics. The research was performed at the Medical Simulation Center of Tzu Chi University.
INTRODUCTION. Over the last twenty years, image-guided interventions have been greatly expanded by the advances in medical imaging and computing power. A key step for any image-guided intervention is to find the image-to-patient transformation matrix, which is the transformation matrix between the preoperative 3D model of patient anatomy and the real position of the patient in the operating room. In this work, we propose a robust registration algorithm to match ultrasound (US) images with preoperative Magnetic Resonance (MR) images of the Humerus. MATERIALS AND METHODS. The fusion of preoperative MR images with intra-operative US images is performed through an NDI Spectra® Polaris system and a L12-5L60N TELEMED® ultrasound transducer. The use of an ultrasound probe requires a calibration procedure in order to determine the transformation between an US image pixel and its position according to a global reference system. After the calibration step, the patient anatomy is scanned with US probe. US images are segmented in real time in order to extract the desired bone contour. The use of an
INTRODUCTION. Modular knee implants are used to manage large bone defects in revision total knee arthroplasty. These implants are confronted with varying fixation characteristics, changes in load transfer or stiffen the bone. In spite of their current clinical use, the influence of modularity on the biomechanical implant-bone behavior (e.g. implant fixation, flexibility, etc.) still is inadequately investigated. Aim of this study is to analyze, if the modularity of a tibial implant could change the biomechanical implant fixation behavior and the implant-bone flexibility. MATERIAL & METHODS. Nine different stem and sleeve combinations of the clinically used tibial revision system Sigma TC3 (DePuy) were compared, each implanted standardized with n=4 in a total of 36 synthetic tibial bones. Four additional un-implanted bones served as reference. Two different cyclic load situations were applied on the implant: 1. Axial torque of ±7Nm around the longitudinal stem axis to determine the rotational implant stability. 2. Varus-valgus-torque of ±3,5Nm to determine the bending behavior of the stem. A high precision