Introduction. Complete or nearly complete disruption of the gluteus attachment is seen in 10–20% of cases at the time of total hip arthroplasty (THA). Special attention is needed to identify the lesion at the time of surgery because the avulsion often is visible only after a thickened hypertrophic trochanteric bursa is removed. The purpose of this study was to evaluate a technique designed to restore abductor function by transferring the gluteus maximus to compensate for the deficient medius and minimus muscles. Methods. From Jan 1 2009 to Dec 31 2013, 525 primary THAs were performed by the author. After the components were implanted, the greater trochanteric bursa was removed, and the gluteus medius and minimus attachments to the greater trochanter were visualized and palpated. Ninety-five hips (95 patients) were found to have damaged muscle attachments to bone. Fifty-four hips had mild damage consisting of splits in the tendon, but no frank avulsion of abductor tendon from the bone attachment. None had severe atrophy of the abductor muscles, but all had partial fatty infiltration. All hips with this mild lesion had repair of the tendons with #5 Ticron sutures to repair the tendon bundles together, anchored to the greater trochanter. Forty-one hips had severe damage with complete or nearly complete avulsion of the gluteus medius and minimus muscles from their attachments to the greater trochanter. Thirty-five of these hips had partial fatty infiltration of the abductor muscles, but all responded to electrical stimulation. The surface of the greater trochanter was denuded of soft tissue with a rongeur, the muscles were repaired with five-seven #5 Ticron mattress sutures passed through drill holes in the greater trochanter, and a gluteus maximus flap was transferred to the posterior third of the greater trochanter and sutured under the vastus lateralis. Six hips had complete detachment of the gluteus medius and minimus muscles, severe atrophy of the muscles, and poor response of the muscles to electrical stimulation. The gluteus medius and minimus muscles were sutured to the greater trochanter, and the gluteus maximus flap was transferred. Postoperatively, patients were instructed to protect the hip for 8 weeks, then abductor exercises were started. Results. The normal hips all had negative Trendelenburg tests at 2 and 5 years postoperative with mild lateral hip pain reported by 11 patients at 2 years, and 12 patients at 5 years. In the 54 with mild abductor tendon damage treated with simple repair, positive Trendelenburg test was found in 5 hips at 2 years and in 8 hips at 5 years. Lateral hip pain was reported in 7 hips at 2 years, and in 22 at 5 years. In the 35 hips with severe avulsion but good
The aim of the HIPGEN consortium is to develop the first cell therapy product for hip fracture patients using PLacental-eXpanded (PLX-PAD) stromal cells. HIPGEN is a multicentre, multinational, randomized, double-blind, placebo-controlled trial. A total of 240 patients aged 60 to 90 years with low-energy femoral neck fractures (FNF) will be allocated to two arms and receive an intramuscular injection of either 150 × 106 PLX-PAD cells or placebo into the medial gluteal muscle after direct lateral implantation of total or hemi hip arthroplasty. Patients will be followed for two years. The primary endpoint is the Short Physical Performance Battery (SPPB) at week 26. Secondary and exploratory endpoints include morphological parameters (lean body mass), functional parameters (abduction and handgrip strength, symmetry in gait, weightbearing), all-cause mortality rate and patient-reported outcome measures (Lower Limb Measure, EuroQol five-dimension questionnaire). Immunological biomarker and in vitro studies will be performed to analyze the PLX-PAD mechanism of action. A sample size of 240 subjects was calculated providing 88% power for the detection of a 1 SPPB point treatment effect for a two-sided test with an α level of 5%.Aims
Methods
Surgical treatment of young femoral neck fractures often requires an open approach to achieve an anatomical reduction. The application of a calcar plate has recently been described to aid in femoral neck fracture reduction and to augment fixation. However, application of a plate may potentially compromise the regional vascularity of the femoral head and neck. The purpose of this study was to investigate the effect of calcar femoral neck plating on the vascularity of the femoral head and neck. A Hueter approach and capsulotomy were performed bilaterally in six cadaveric hips. In the experimental group, a one-third tubular plate was secured to the inferomedial femoral neck at 6:00 on the clockface. The contralateral hip served as a control with surgical approach and capsulotomy without fixation. Pre- and post-contrast MRI was then performed to quantify signal intensity in the femoral head and neck. Qualitative assessment of the terminal arterial branches to the femoral head, specifically the inferior retinacular artery (IRA), was also performed.Aims
Methods
The gluteus minimus (GMin) and gluteus medius (GMed) have unique structural and functional segments that may be affected to varying degrees, by end-stage osteoarthritis (OA) and normal ageing. We used data from patients with end-stage OA and matched healthy controls to 1) quantify the atrophy of the GMin and GMed in the two groups and 2) describe the distinct patterns of the fatty infiltration in the different segments of the GMin and GMed in the two groups. A total of 39 patients with end-stage OA and 12 age- and sex frequency-matched healthy controls were prospectively enrolled in the study. Fatty infiltration within the different segments of the GMin and the GMed was assessed on MRI according to the semiquantitative classification system of Goutallier and normalized cross-sectional areas were measured.Aims
Methods
The aims of this study were to assess the exposure and preservation of the abductor mechanism during primary total hip arthroplasty (THA) using the posterior approach, and to evaluate gluteus maximus transfer to restore abductor function of chronically avulsed gluteus medius and minimus. A total of 519 patients (525 hips) underwent primary THA using the posterior approach, between 2009 and 2013. The patients were reviewed preoperatively and at two and five years postoperatively. Three patients had mild acute laceration of the gluteus medius caused by retraction. A total of 54 patients had mild chronic damage to the tendon (not caused by exposure), which was repaired with sutures through drill holes in the greater trochanter. A total of 41 patients had severe damage with major avulsion of the gluteus medius and minimus muscles, which was repaired with sutures through bone and a gluteus maximus flap transfer to the greater trochanter.Aims
Patients and Methods
The direct anterior approach in total hip replacement anatomically offers the chance to minimise soft-tissue trauma because an intermuscular and internervous plane is explored. This motivated us to abandon our previously used transgluteal approach and to adopt the direct anterior approach for total hip replacement. Using MRI, we performed a retrospective comparative study of the direct anterior approach with the transgluteal approach. There were 25 patients in each group. At one year post-operatively all the patients underwent MRI of their replaced hips. A radiologist graded the changes in the soft-tissue signals in the abductor muscles. The groups were similar in terms of age, gender, body mass index, complexity of the reconstruction and absence of symptoms. Detachment of the abductor insertion, partial tears and tendonitis of gluteus medius and minimus, the presence of peri-trochanteric bursal fluid and fatty atrophy of gluteus medius and minimus were significantly less pronounced and less frequent when the direct anterior approach was used. There was no significant difference in the findings regarding tensor fascia lata between the two approaches. We conclude that use of the direct anterior approach results in a better soft-tissue response as assessed by MRI after total hip replacement. However, the impact on outcome needs to be evaluated further.
In 12 patients, we measured the oxygen concentration in the femoral head-neck junction during hip resurfacing through the anterolateral approach. This was compared with previous measurements made for the posterior approach. For the anterolateral approach, the oxygen concentration was found to be highly dependent upon the position of the leg, which was adjusted during surgery to provide exposure to the acetabulum and femoral head. Gross external rotation of the hip gave a significant decrease in oxygenation of the femoral head. Straightening the limb led to recovery in oxygen concentration, indicating that the blood supply was maintained. The oxygen concentration at the end of the procedure was not significantly different from that at the start. The anterolateral approach appears to produce less disruption to the blood flow in the femoral head-neck junction than the posterior approach for patients undergoing hip resurfacing. This may be reflected subsequently in a lower incidence of fracture of the femoral neck and avascular necrosis.