Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 205 - 205
1 Dec 2013
Widmer K
Full Access

Introduction:. Dislocation is still one of the major complications in total hip arthroplasty. Among other factors, it is important to maximize the intended range of movement (iROM) in order to reduce the risk for prosthetic impingement and to prevent edge loading in order to avoid surface damage and squeaking. Therefore, both components should be positioned in accordance to the new combined safe-zone for correct combined version and inclination aiming for an optimal relative orientation of both components. This study shows how this optimal combined orientation of both components can be determined for a specific total hip prosthetic system and how the result can be transferred to surgery and accomplished intraoperatively using minimal-invasive stem-first technique. Material and Methods:. 829 minimal-invasive total hip arthroplasties have been performed from 2007 to 2013 in our institution. In all of these surgeries a minimal-invasive direct anterior approach (DAA) was applied. All patients were positioned supine on a proprietary orthopedic table. In 168 cases a system-specific mechanical aiming device was used intraoperatively in order to control the combined version and inclination according to the specific safe-zone by orienting the prosthetic socket in relation to the prosthetic stem. This is called “stem-first technique” meaning that the prosthetic stem dictates the orientation of the socket. It does not mean the sequence of implantation. It's specific advantage is that the stem redirects the socket if it's position is modified. It equally applies to standard, anatomic (Fig. 1) or short stems (Fig. 2). The socket orientation is not primarily referred to bony landmarks of the pelvis but to the neck of the stem. Nevertheless the surgeon has to look for sufficient fixation of the socket within the acetabular bone. Leg length was measured in the surgical field additionally and prosthetic offset was adjusted according to the preoperative planning. All other patients were operated on in our standard minimal-invasive DAA-procedure. The majority of the patients suffered from osteoarthritis, their mean age was 68 years. Results:. Optimal component orientation for each prosthesis system was derived from its 3D-model by simulating hip joint motion in the physiologic range of motion. Optimal component orientation means maximizing the area of the combined safe-zone. In the stem-first group cup orientation was in the new combined safe-zone in 94% of the cases and no squeaking or prosthetic impingement did occur in any of these patients. Leg length did not differ more than +/− 5 mm. 83% of all patients receiveda ceramic-on-ceramic articulation, one early dislocation did occur and treated by closed reduction. Conclusion:. Stem-first technique is ideally suited for the minimal-invasive direct anterior approach in total hip arthroplasty to control the combined orientation of the prosthetic components and to achieve excellent clinical results. It assists the surgeon in aligning the cup and the stem according to their correct combined orientation in order to get an optimal range of movement especially in young patients


Introduction. Dislocation due to suboptimal cup positioning is a devastating complication in the early phase after total hip arthroplasty. Malpositioning can also result in other mechanical complications like subluxation, edge loading, increased debris, surface damage or squeaking in ceramic-on-ceramic hips. Preventing at least some of these complications in younger and more active patients is of paramount interest for the individual patient and for the society since optimized component orientation is an important determinant to reduce such risks and to further increase longevity of the implant. This study reports on two new surgical instruments that help the orthopedic surgeon to manually place both components within the optimized combined safe-zone (cSafe-Zone). Material and Methods. More than 900 minimal-invasive total hip arthroplasties (MIS-THA) have been performed between 2007 and 2015 in our institution using the minimal-invasive direct anterior approach (DAA) on an orthopedic table with foot holder. Cups were implanted applying the “stem-first” surgical technique i.e. the prosthetic stem dictates the orientation of the socket depending on the prosthesis design. A system-specific trial head which indicates the prosthesis-specific relative orientation of cup and stem and a modified cup impactor were used to finally seat the definitive acetabular socket manually during trial stem reduction while fully visually controlling the optimal orientation of the cup during impaction. This surgical technique drives both components into their optimal relative positions according to the combined version and the combined safe-zone concept in total hip arthroplasty. Results. Both new instruments, femoral trial head as well as the modified cup impactor, provide an easy way to manually control the optimal placement of the acetabular socket during impaction intraoperatively. The combined safe-zone is clearly indicated and the inverse interrelationship of stem and cup anteversion is ideally reflected by this simple mechanical system. In patients operated on with the “stem-first” technique the components were placed in the new cSafe-Zone in 94% of the cases and no squeaking or prosthetic impingement did occur in any of these patients. One early dislocation did occur and was treated by closed reduction. Conclusion. Stem-first technique using trial head-controlled impaction with a modified cup impactor is ideally suited for the minimal-invasive direct anterior approach in total hip arthroplasty to control the placement of both prosthetic components. It assists the surgeon in aligning the cup and the stem according to the cSafe-Zone in order to get the intended range of movement (iROM)


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 97 - 97
1 Aug 2013
Richter P Rahmanzadeh T Gebhard F Krischak G Arand M Weckbach S Kraus M
Full Access

INTRODUCTION. Isolated injuries of the sacral bone are rare. The pathomechanism of these injuries are usually high velocity accidents or falls from large heights. The computer-assisted implantation of iliosacral screws (SI-screw) becomes more important in the treatment of dorsal pelvic ring fractures. The advantage of the minimal-invasive screw placement is the reduction of the non-union and deep wound infection rate. Another advantage of computer-navigated SI-screw placement is the reduction of intraoperative radiation for the patient and the surgical staff. The purpose of this study was to analyse the position of navigated iliosacral screws. METHODS. In the study group 74 screws (49 patients) were included and radiologically analysed. All screws were implanted using 3D-navigation (BrainLAB Vector Vision, Brainlab, Germany). Navigation was always executed with the same 3D c-arm (ARCADIS Orbic 3D, Siemens, Germany) and navigation system. We determined the grade of perforation and angular deviation in the postoperative CT-scans in all screws. The classification was performed according to Smith et al in 4 grades. Grade 0 implies no perforation and grade 1 a perforation less than 2 mm. Grade 2 correlates a perforation of 2–4 mm and grade 3 a perforation of more than 4 mm. Furthermore the intra- and postoperative complications as well as the body-mass-index, the co-morbidities and the duration of radiation were documented. The statistical analysis was executed using Microsoft Excel 2003. RESULTS. The mean age of the 49 patients was 42.2 years ± 18 (16–79 years). 28 male and 21 female patients were included. 25 patients received a single iliosacral screw in S1. In 19 cases a screw in S1 and S2 was placed on the same side. Four patients got bilateral SI-screws in S1 and another patient received bilateral screw placement in S1 as well as an additional screw in S2. The mean operation time was 100 min ±103 (20–540 min). The isolated time for SI-placement was 50 min ± 20 (20–93 min). The mean radiation time was 3 min ± 1.7 (0.9–7.4 min) (n = 28). Altogether 84% of the screws showed an intraosseous position (grade 0). In the axial plane 7 screws perforated ventrally, 5 screws penetrated the adjacent neural foramen. In the frontal plane the screws showed greater variations, 61% deviated less than 5° (grade 0). In the study group 5 screws needed surgical revision because of either malplacement or postoperative pain. There were no infections or neurological complications. There was no statistical correlation between screw perforation and the body-mass-index. CONCLUSION. The computer-assisted implantation of iliosacral screws is a safe method in relation to screw perforation. It shows a high security and accuracy concerning the ventral and dorsal cortical perforation. There is a frequent angular deviation in the frontal view without appearance of screw perforation or mechanic, neurologic and angiologic complications. The minimal-invasive procedure shows a low postoperative revision rate


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 13 - 13
1 Oct 2012
Müller M Belei P de la Fuente M Strake M Kabir K Burger C Radermacher K Wirtz DC
Full Access

Pertrochanteric femoral fractures are common and intramedullary nailing with a proximal femoral nail (PFNA®) is an accepted method for the surgical treatment. Accurate guide wire and subsequent hardware placement in the femoral neck is believed to be essential in order to avoid mechanical failure. Malpositioned implants may lead to rotational or angular malalignment or “cut out” in the femoral neck. Hip and knee arthritis might be a potential long-term consequence. The conventional technique might require multiple guidewire passes, and relies heavily on fluoroscopy. A computer-assisted surgical planning and navigation system based on 2D-fluoroscopy was developed in-house as an intraoperative guidance system for navigated guide wire placement in the femoral neck and head. To support the image acquisition process, the surgeon is supported by a so-called “zero-dose C-arm navigation” module. This tool enables a virtual radiation-free preview of the X-ray images of the femoral neck and head. The aim of this study was to compare PFNA® insertion using this system to conventional implantation technique. We hypothesised that guide wire and subsequent implant placement using our software decreases radiation exposure to the minimum of two images and reduces the number of drilling attempts. Furthermore, accuracy of implant placement in comparison to the conventional method might be improved and operation time shortened. We used 24 identical intact left femoral Sawbones® to simulate reduced pertrochanteric femoral fractures. First, we performed placement of the PFNA® into 12 Sawbones using the conventional fluoroscopic technique (group 1). Secondly, we performed placement of the PFNA® into 12 Sawbones guided by the computer-assisted surgical planning software (group 2). In each group, we first performed open and secondly minimal-invasive intramedullary nailing in six sawbones each. For minimal-invasive guide wire placement, a surgical drape imitated soft tissue coverage. Conventional and navigated technique used a C-arm fluoroscope (Siemens IsoC 3D®, Erlangen, Germany) in conventional 2D mode. Guidewire and subsequent blade placement in the femoral neck was evaluated. We documented: 1: the number of fluoroscopic images; 2: the total number of drilling attempts; 3: implant placement accuracy (3.1. Tip apex distance (TAD); 3.2. visible penetrations of the femoral neck and head; 3.3. blade-corticalis bone distance in the anteroposterior and lateral plane) and the 4: operation time. The number of fluoroscopic single shots taken to achieve an acceptable PFNA®-blade position was reduced significantly with computer-assistance by 71.5% (p<0.001) in the open and by 72,4% (p<0.001) in the minimally invasive technique. In each operation two X-rays for final documentation were taken. The average number of drilling attempts for the computer-guided system was significantly (p<0.05) less than that of the conventional technique in the minimally invasive procedure. The average number of drilling attempts showed no difference between the computer-assisted and conventional techniques in the open procedure. Accuracy of implant placement showed no difference between the computer-assisted and the conventional group. Computer assistance significantly increased the mean operation time for fixation of pertrochanteric femoral fractures with a PFNA® by 79.8% (p<0.001) in the open technique and by 54.4% (p<0.001) in the minimally invasive technique. Use of our computer-guided system for fixation of pertrochanteric femoral fractures by a PFNA® decreases the number of fluoroscopic single shots and of suboptimal guide wire passes while maintaining blade placement accuracy that is equivalent to the conventional technique. Computer-assisted surgery with our system increases the operation time and has just been tested in non-fractured sawbones. Although these results are promising, additional studies including fractured sawbones and cadaver models with extension of the navigation process to all steps of PFNA® introduction and with the goal of reducing the operation time are indispensable before integration of this navigation system into the clinical workflow


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 141 - 141
1 Jan 2016
Yang C
Full Access

Total knee replacement is a standard procedure for the end-staged knee joints. The main concerns at the perioperative period are infection prophylaxis, pain control, and blood loss management. Several interventions are designed to decrease the blood loss during and after the operation of total knee arthroplasty. In the recent meta-analysis showed that early tourniquet release of the tourniquet for hemostasis increased the total measured blood loss with primary TKR about 228.7 ml. So, Intra-operative blood loss for hemostasis can be saved by not to release the tourniquet after implants fixation, irrigation, closure of the wound and the application of compression dressing. Our study showed that most of the post-operative blood loss was collected during the first few postoperative hours: 37% in the first 2 hours and 55% in the first 4 hours and 82.1% in the first 24 hours. So, clamping the drainage for the first 4 postoperative hours would reduce blood loss after TKA (518 v.s. 843 mL). The fall in hemoglobin and Hct are also of significant difference (1.64 vs. 2.09 for Hb; 5.18 vs.7.69 for Hct). Appropriate clamping for an optimal time may be the most economical and simple, and the benefits of clamping also appear to outweigh its potential risks. NO DRAIN at all is able to reduce the post-operative blood loss. Our study showed that the decrease of postoperative hemoglobin was significantly less than that in no-drain group (1.45±0.72 vs 1.8±0.91). Shorter hospital stay was achieved in the no-drain group (8.3 ± 2.6 vs 10.7±3.2 days). All patients achieved good range of motion (flexion: 0 to >90 degree)by the five days after operation and no prosthetic infection was noted during follow-up. Thus, the routine use of closed suction drains for elective minimal-invasive total knee arthroplasty is not recommended