Aims. This study investigated vancomycin-microbubbles (Vm-MBs) and meropenem (Mp)-MBs with ultrasound-targeted microbubble destruction (UTMD) to disrupt biofilms and improve bactericidal efficiency, providing a new and promising strategy for the treatment of device-related infections (DRIs). Methods. A film hydration method was used to prepare Vm-MBs and Mp-MBs and examine their characterization. Biofilms of
Aims. Periprosthetic joint infections (PJIs) are rare, but represent a great burden for the patient. In addition, the incidence of
Aims. Treatment outcomes for
Aims. Biofilm formation is intrinsic to prosthetic joint infection (PJI). In the current study, we evaluated the effects of silver-containing hydroxyapatite (Ag-HA) coating and vancomycin (VCM) on
Arthroplasty has been shown to generate the most waste among all orthopaedic subspecialties, and it is estimated that hip and knee arthroplasty generate in excess of three million kg of waste annually in the UK. Infectious waste generates up to ten times more CO2 compared with recycled waste, and previous studies have shown that over 90% of waste in the infectious stream is misallocated. We assessed the effect of real-time waste segregation by an unscrubbed team member on waste generation in knee and hip arthroplasty cases, and compared this with a simple educational intervention during the ‘team brief’ at the start of the operating list across two sites. Waste was categorized into five categories: infectious, general, recycling, sharps, and linens. Each category was weighed at the end of each case using a digital weighing scale. At Site A (a tertiary orthopaedic hospital), pre-intervention data were collected for 16 total knee arthroplasy (TKA) and 15 total hip arthroplasty (THA) cases. Subsequently, for ten TKA and ten THA cases, an unscrubbed team member actively segregated waste in real-time into the correct streams. At Site B (a district general hospital), both pre- and post-intervention groups included ten TKA and ten THA cases. The intervention included reminding staff during the ‘team brief’ to segregate waste correctly.Aims
Methods
Aims.
Aims. To characterize the intracellular penetration of osteoblasts and osteoclasts by
This prospective five-year study analyses the impact of
Aims. Infection after surgery increases treatment costs and is associated with increased mortality. Hip fracture patients have historically had high rates of
Aims. Infection complicating primary total knee arthroplasty (TKA) is a common reason for revision surgery, hospital readmission, patient morbidity, and mortality. Increasing incidence of
Objectives. Vancomycin and fosfomycin are antibiotics commonly used to treat
The objective of this study was to determine the effectiveness of screening and successful treatment of
Local antimicrobial therapy is an integral aspect of treating orthopaedic device related infection (ODRI), which is conventionally administered via polymethylmethacrylate (PMMA) bone cement. PMMA, however, is limited by a suboptimal antibiotic release profile and a lack of biodegradability. In this study, we compare the efficacy of PMMA versus an antibioticloaded hydrogel in a single- stage revision for chronic
We examined the rates of infection and colonisation by
Aim. Treatment of prosthetic joint infection (PJI) by systemic administration of high doses of long-term antibiotics often proves ineffective, causing severe side effects. Thus, we presented the phage Sb-1, which coding extracellular polymeric substances (EPS) degradation depolymerases, conjugated with rifampicin-loaded liposomes (Lip-RIF@Phage) by bio-orthogonal functionalization strategy to target biofilm (Figure1). Method.
Orthopedic Device-Related Infections (ODRIs) are a major medical challenge, particularly due to the involvement of biofilm-encased and multidrug-resistant bacteria. Current treatments, based on antibiotic administration, have proven to be ineffective. Consequently, there is a need for antibiotic-free alternatives. Antimicrobial peptides (AMPs) are a promising solution due to their broad-spectrum of activity, high efficacy at very low concentrations, and low propensity to induce resistance. We aim to develop a new AMP-based chitosan nanogel to be injected during orthopedic device implantation to prevent ODRIs. Chitosan was functionalized with norbornenes (NorChit) through the reaction with carbic anhydride and then, a cysteine-modified AMP, Dhvar5, a peptide with potent antibacterial activity, even against
Aim. Bacteriophages are remerging as alternative and adjunctive therapy for fracture-related infection (FRI). However, current administration protocols involve prolonged retention of a percutaneous draining tube with potential risk of developing superinfection. In this study, we applied a cocktail of in vitro evolved biofilm-targeting phages for
Aim. Antibiotics have limited activity in the treatment of multidrug-resistant or chronic biofilm-associated infections, in particular when implants cannot be removed. Lytic bacteriophages can rapidly and selectively kill bacteria, and can be combined with antibiotics. However, clinical experience in patients with surgical infections is limited. We investigated the outcome and safety of local application of bacteriophages in addition to antimicrobial therapy. Method. 8 patients (2 female and 6 male) with complex orthopedic and cardiovascular infections were included, in whom standard treatment was not feasible or impossible. The treatment was performed in agreement with the Article 37 of the Declaration of Helsinki. Commercial or individually prepared bacteriophages were provided by ELIAVA Institute in Tbilisi, Georgia. Bacteriophages were applied during surgery and continued through drains placed during surgery three times per day for the following 5–14 days. Follow-up ranged from 1 to 28 months. Results. Median age was 57 years, range 33–75 years. Two patients were diagnosed with a persistent knee arthrodesis infection, one chronic periprosthetic joint infection (PJI), one cardiovascular implantable electronic device (CIED) infection and four patients with left ventricular assist device (LVAD) infection. The isolated pathogens were multi-drug-resistant Pseudomonas aeruginosa (n=3), methicillin-sensitive Staphylococcus aureus (n=4),
We examined the incidence of infection with
Between October 2001 and February 2002, 324 healthcare workers were screened for