Aims. Porous
Aims.
Aims.
Aims. Metaphyseal fixation during revision total knee arthroplasty (TKA) is important, but potentially difficult when using historical designs of cone. Material and manufacturing innovations have improved the size and shape of the cones which are available, and simplified the required bone preparation. In a large series, we assessed the implant survivorship, radiological results, and clinical outcomes of new porous 3D-printed titanium
Metaphyseal bone loss is common with revision
total knee replacement (RTKR). Using the Anderson Orthopaedic Research
Institute (AORI) classification, type 2-B and type 3 defects usually
require large metal blocks, bulk structural allograft or highly
porous metal cones. Tibial and femoral trabecular metal metaphyseal
cones are a unique solution for large bone defects. These cones
substitute for bone loss, improve metaphyseal fixation, help correct
malalignment, restore the joint line and may permit use of a shorter
stem. The technique for insertion involves sculpturing of the remaining
bone with a high speed burr and rasp, followed by press-fit of the
cone into the metaphysis. The fixation and osteoconductive properties
of the porous cone outer surface allow ingrowth and encourage long-term
biological fixation. The revision knee component is then cemented
into the porous cone inner surface, which provides superior fixation
compared with cementing into native but deficient metaphyseal bone.
The advantages of the cone compared with allograft include: technical
ease, biological fixation, no resorption, and possibly a lower risk
of infection. The disadvantages include: difficult extraction and
relatively short-term follow-up. Several studies using cones report
promising short-term results for the reconstruction of large bone
defects in RTKR. Cite this article:
The February 2024 Knee Roundup. 360. looks at: Do patients with hypoallergenic total knee arthroplasty implants for metal allergy do worse? An analysis of healthcare utilizations and patient-reported outcome measures; Defining a successful total knee arthroplasty; Incidence, microbiological studies, and factors associated with periprosthetic joint infection after total knee arthroplasty; A modified Delphi consensus statement on patellar instability; Cause for concern? Significant cement coverage in retrieved
Introduction. Porous
Introduction.
Massive bone loss on both the femur and tibia during revision total knee arthroplasty (TKA) remains a challenging problem. Multiple solutions have been proposed for small osseous defects, including morselised cancellous bone grafting, small-fragment structural allograft, thicker polyethylene inserts, and the use of modular augments attached to revision prosthetic designs. Large osseous defects can be treated with structural allografts, impaction bone-grafting with or without mesh augmentation, custom prosthetic components, and specialised hinged knee components. The metaphyseal area of the distal femur and proximal tibia is a particularly attractive option during revision TKA given that it is usually undamaged and well-vascularised. While multiple reconstructive options have been recommended, porous tantalum
Introduction. Modularity in femoral stem designs allow surgeons to independently control leg length, offset, and femoral version in revision or complex primary THA cases. Initial enthusiasm in these modular stems has been tempered by recognition of modular junction failures. This study evaluates mean 5-year clinical results and survival rates of a 3-part titanium alloy modular femoral implant with unique taper geometries and a metaphyseal plasma spray surface. The current results are presented after pre-market independent fatigue testing performed by Orthopaedic Laboratory (Greenwald) and previously published early clinical results in 2006. Low plasticity burnishing (LPB) was added in 2005 to further strengthen the neck metaphyseal modular junction. The modular stem component is a polished cylindrical splined clothespin design. Our hypothesis is that these unique modular junctions succeed in offering the advantages of modularity without failure at this midterm follow-up period. Methods. Between May 2010 and July 2016, 32 total hip arthroplasties were performed using a 3-part femoral stem with neck-metaphyseal-stem modular junctions. Surgeries were either the final stage of a two-stage revision for infection, revision THR for loosening, or a revision of a previous non-prosthetic replacement procedure. Patients were entered into an IRB-approved registry and followed with x-rays, HHS, Oxford scores, and patient satisfaction scores. Patients who failed to return for routine follow-up were contacted by phone or email. Two patients had died with their implants intact. Six patients could not be reached for an updated follow-up. One stem was revised for loosening at 33 months due to failed osseointegration in a patient with chronic renal failure. This removed stem was submitted for taper exam and sectioning. Results. There were 23 patients for evaluation at a mean 61 months (range 21–98). Mean patient age at implantation was 56 (range 25–88), BMI was 27 (range 20–40). There were no modular junction failures. Modular junctions examined in the retrieved implant did not demonstrate any abnormalities other than normal wear properties. HHS and OHS scores both improved between pre-op and final follow-up, 23 to 85 and 17 to 43, respectively. Average patient satisfaction score at final follow-up was 9.8 out of 10 (min 8, max 10). Radiographic examination showed stem subsidence > 2mm and radiolucencies around the
Aims. Varus-valgus constrained (VVC) implants are often used during revision total knee arthroplasty (TKA) to gain coronal plane stability. However, the increased mechanical torque applied to the bone-cement interface theoretically increases the risk of aseptic loosening. We assessed mid-term survivorship, complications, and clinical outcomes of a fixed-bearing VVC device in revision TKAs. Methods. A total of 416 consecutive revision TKAs (398 patients) were performed at our institution using a single fixed-bearing VVC TKA from 2007 to 2015. Mean age was 64 years (33 to 88) with 50% male (199). Index revision TKA diagnoses were: instability (n = 122, 29%), aseptic loosening (n = 105, 25%), and prosthetic joint infection (PJI) (n = 97, 23%). All devices were cemented on the epiphyseal surfaces. Femoral stems were used in 97% (n = 402) of cases, tibial stems in 95% (n = 394) of cases; all were cemented. In total, 93% (n = 389) of cases required a stemmed femoral and tibial component. Femoral cones were used in 29%, and tibial cones in 40%. Survivorship was assessed via competing risk analysis; clinical outcomes were determined using Knee Society Scores (KSSs) and range of movement (ROM). Mean follow-up was four years (2 to 10). Results. The five-year cumulative incidence of subsequent revision for aseptic loosening and instability were 2% (95% confidence interval (CI) 0.2 to 3, number at risk = 154) and 4% (95% CI 2 to 6, number at risk = 153), respectively. The five-year cumulative incidence of any subsequent revision was 14% (95% CI 10 to 18, number at risk = 150). Reasons for subsequent revision included PJI (n = 23, of whom 12 had previous PJI), instability (n = 13), and aseptic loosening (n = 11). The use of this implant without stems was found to be a significant risk factor for subsequent revision (hazard ratio (HR) 7.58 (95% CI 3.98 to 16.03); p = 0.007). KSS improved from 46 preoperatively to 81 at latest follow-up (p < 0.001). ROM improved from 96° prerevision to 108° at latest follow-up (p = 0.016). Conclusion. The cumulative incidence of subsequent revision for aseptic loosening and instability was very low at five years with this fixed-bearing VVC implant in revision TKAs. Routine use of cemented and stemmed components with targeted use of
Aim. Femoral or tibial massive bone defects (AORI F2B-F3 / T2B-T3) are common in septic total knee replacement. Different surgical techniques are described in literature. In our study we show clinical and radiological results associated with the use of tantalum
The amount of bone loss due to implant failure, loosening, or osteolysis can vary greatly and can have a major impact on reconstructive options during revision total knee arthroplasty (TKA). Massive bone loss can threaten ligamentous attachments in the vicinity of the knee and may require use of components with additional constraint to compensate for associated ligamentous instability. Classification of bone defects can be helpful in predicting the complexity of the reconstruction required and in facilitating preoperative planning and implant selection. One very helpful classification of bone loss associated with TKA is the Anderson Orthopaedic Research Institute (AORI) Bone Defect Classification System as it provides the means to compare the location and extent of femoral and tibial bone loss encountered during revision surgery. In general, the higher grade defects (Type IIb or III) on both the femoral and tibial sides are more likely to require stemmed components, and may require the use of either structural graft or large augments to restore support for currently available modular revision components. Custom prostheses were previously utilised for massive defects of this sort, but more recently have been supplanted by revision TKA component systems with or without special metal augments or structural allograft. Options for bone defect management are: 1) Fill with cement; 2) Fill with cement supplemented by screws or K-wires; 3) Morselised bone grafting (for smaller, especially contained cavitary defects); 4) Small segment structural bone graft; 5) Impaction grafting; 6) Porous metal cones or sleeves 7) Massive structural allograft-prosthetic composites; 8) Custom implants. Of these, use of uncemented highly porous metal
Introduction. Metaphyseal fixation during revision total knee arthroplasties (TKAs) is important, but potentially challenging with historical cone designs. Material and manufacturing innovations have improved the size and shape of cones available, and simplified requisite bone preparation. In a very large series, we assessed implant survivorship, radiographic results, and clinical outcomes of new porous 3-D printed titanium
The management of bone loss in revision total knee replacement (TKA) remains a challenge. To accomplish the goals of revision TKA, the surgeon needs to choose the appropriate implant design to “fix the problem,” achieve proper component placement and alignment, and obtain robust short- and long-term fixation. Proper identification and classification of the extent of bone loss and deformity will aid in preoperative planning. Extensive bone loss may be due to progressive osteolysis (a mechanism of failure), or as a result of intraoperative component removal. The Anderson Orthopaedic Research Institute (AORI) is a useful classification system that individually describes femoral and tibial defects by the appearance, severity, and location of bone defects. This system provides a guideline to treatment and enables preoperative planning on radiographs. In Type 1 defects, femoral and tibial defects are characterised by minor contained deficiencies at the bone-implant interface. Metaphyseal bone is intact and the integrity of the joint line is not compromised. In this scenario, the best reconstruction option is to increase the thickness of bone resection and to fill the defect with cancellous bone graft or cement. Type 2 defects are characterised by deficient metaphyseal bone involving one or more femoral condyle(s) or tibial plateau(s). The peripheral rim of cortical bone may be intact or partially compromised, and the joint line is abnormal. Reconstruction options for a Type 2A defect include impaction bone grafting, cement, or more commonly, prosthetic augmentation (e.g. sleeves, augments or wedges). In Type 2B defects, metaphyseal bone of both femoral condyles or both tibial plateaus is deficient. The peripheral rim of cortical bone may be intact or partially compromised, and the joint line is abnormal. Options for a Type 2B defect include impaction grafting, bulk structural allograft, prosthetic augmentation, metaphyseal sleeves (in some cases), or
Stems provide short- and long-term stability to the femoral and tibial components. Poorer epiphyseal and metaphyseal bone quality will require sharing or offloading the femoral and tibial component interfaces with a stem. One needs to use stem technique most appropriate for each individual case because of variable anatomy and bone loss situations. The conflict with trying to obtain stability via the stem is that most stems are cylindrical but femoral and tibial metaphyseal/diaphyseal areas are conical in shape. Viable stem options include fully cemented short and long stems, uncemented long stems, offset uncemented stems, and a hybrid application of a cemented proximal end of longer uncemented diaphyseal engaging stems. Stems are not without their risk. The more the load is transferred to the cortex, the greater the risk of proximal interface stress shielding. A long uncemented stem has similar stress shielding as a short cemented stem. Long diaphyseal engaging stems that are cemented or uncemented have the potential to have end of stem pain, especially if more diaphyseal reaming is done to obtain greater cortical contact. A conical shaped long stem can provide more stability than a long cylindrical stem and avoid diaphyseal reaming. Use of long stems may create difficulty in placement of the tibial and femoral components in an optimal position. If the femoral or tibial components do not allow an offset stem insertion, using a long offset stem or short cemented stem is preferred. The amount of metaphyseal bone loss will drive the choice of stem used. Short cemented stems will not have good stability in poor metaphyseal bone without getting the cement out to the cortex. Long cemented stems provide satisfactory survivorship, however, most surgeons avoid cementing long stems due to the difficulty of removal, if a subsequent revision is required. If the metaphyseal bone is excellent, use of a short cemented stem or long uncemented stem can be expected to have good results. Long fully uncemented stems must have independent stability to be effective, or should be proximally cemented as a hybrid technique. Cases with AOI type IIb and III tibial and femoral defects are best managed with use of
Metaphyseal bone loss, due to loosening, osteolysis or infection, is common with revision total knee arthroplasty (TKA). Small defects can be treated with screws and cement, bone graft, and non-porous metal wedges or blocks. Large defects can be treated with bulk structural allograft, impaction grafting, or highly porous metal cones. The AORI classification of bone loss in revision TKA is very helpful with pre-operative planning. Type 1 defects do not require augments or graft—use revision components with stems. Type 2A defects should be treated with non-porous metal wedges or blocks. Type 2B and 3 defects require a bulk structural allograft or porous metal cone. Highly-porous metal
Introduction. Extraction of implants due to periprosthetic infection (PJI) following complex revision total knee arthroplasty (rTKA) with extensive hardware can be a daunting undertaking for surgeon and patient alike. We question whether irrigation and debridement (I&D) has a role in this difficult situation with respect to infection control, reoperation, and function. Methods. rTKAs for PJI from 2005–2016 were reviewed. Extensive hardware was defined as:
Metaphyseal bone loss, due to loosening, osteolysis or infection, is common with revision total knee arthroplasty (TKA). Small defects can be treated with screws and cement, bone graft, and non-porous metal wedges or blocks. Large defects can be treated with bulk structural allograft, impaction grafting, or highly porous metal cones. The AORI classification of bone loss in revision TKA is very helpful with preoperative planning. Type 1 defects do not require augments or graft—use revision components with stems. Type 2A defects should be treated with non-porous metal wedges or blocks. Type 2B and 3 defects require a bulk structural allograft or porous metal cone. Trabecular metal (TM)
Restoration of bone loss is a major challenge of revision TKA surgery. It is critical to achieve of a stable construct to support implants and achieve successful results. Major bone defects of the femoral and/or tibia (AORI type IIB/III) have been reconstructed using impaction grafting, structural allografts or tumor prostheses. The major concerns with structural allograft are graft resorption, mechanical failure, tissue availability, disease transmission, considerable surgical skill required and prolonged operative time. Porous tantalum