Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 83 - 83
1 Nov 2018
Paulus AC Ebinger K Haßelt S Kretzer JP Bader R Utzschneider S
Full Access

The biological reaction in metallosis and pseudotumor generation after metal on metal total hip arthroplasty or corroding metal implants remains unsettled. Clinically, still lethal cases appear with massive bone loss and metal ions are suspected to be responsible for this inflammatory reaction, solid metal wear particles instead are usually not observed in the common literature. The aim of this study was to compare the biological reactions of metal ions and metal wear particles in a murine in vivo model. Metal ions (CoCr), metal particles (CoCr), polyethylene particles (UHMWPE) and phosphate buffered saline (PBS) were injected into the left knee joint of female BALB/c mice. 7 days after injection, the microcirculation was observed using intravital fluorescence microscopy, followed by euthanasia of the animals. After the assessment of the knee diameter, the knees underwent histological evaluations of the synovial layer. Throughout all recorded data, CoCr particles caused higher inflammatory reactions compared to metal ions and UHMWPE particles. The mice treated with the solid particles showed enlarged knee diameters, more intensive leukocyte–endothelial cell interactions and an elevated functional capillary density. Pseudotumor-like tissue formations in the synovial layer of the mice were only seen after the exposition to solid CoCr particles. Even if the focus of several national guidelines concerning metallosis and pseudotumor generation is on metal ions, the present data reveal that solid CoCr particles have the strongest inflammatory activity compared with metal ions and UHMWPE particles in vivo


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 41 - 41
1 Jul 2014
Grosse S Høl P Lilleng P Haugland H Hallan G
Full Access

Summary. Particulate wear debris with different chemical composition induced similar periprosthetic tissue reactions in patients with loosened uncemented and cemented titanium hip implants, which suggests that osteolysis can develop independent of particle composition. Introduction. Periprosthetic osteolysis is a serious long-term complication in total hip replacements (THR). Wear debris-induced inflammation is thought to be the main cause for periprosthetic bone loss and implant loosening. The aim of the present study was to compare the tissue reactions and wear debris characteristics in periprosthetic tissues from patients with failed uncemented (UC) and cemented (C) titanium alloy hip prostheses. We hypothesised that implant wear products around two different hip designs induced periprosthetic inflammation leading to osteolysis. Patients & Methods. Thirty THR-patients undergoing revision surgery were included: Fifteen patients had loose cemented titanium stems (Titan. ®. , DePuy) and 15 had well-fixed uncemented titanium stems (Profile, DePuy), but loose or worn uncemented metal-backed cups with conventional UHMWPE liners (Gemini, Tropic and Tri-Lock Plus, DePuy; Harris/Galante and Trilogy, Zimmer). A semi-quantitative histological evaluation was performed in 59 sections of periprosthetic tissues using light microscopy. Wear particles were counted by polarised light and high resolution dark-field microscopy. Additionally, particle composition was determined by SEM-EDXA following particle isolation using an enzymatic digestion method. Blood metal ions were determined with high resolution-ICP-MS. Results. The implants in the uncemented group were revised after a median of 15.7 years (range: 7.25–19.3) due to osteolysis and high wear of the polyethylene liner and metal backing resulting in gross metallosis, and/or cup loosening. The average lifetime of implants in the cemented group was only 6.5 years (range: 1.5–11.75) due to early stem loosening with large osteolysis pockets in the femur close to the cement mantle. Tissue examination revealed similar results for both groups: numerous mononuclear histiocytes and chronic inflammatory cells, a few neutrophils and multinucleated giant cells, and to some extent necrosis. The amount of metal particles per histiocyte positively correlated with the tissue reactions in the cemented, but not in the uncemented group. A higher particle load (medians: C: 14727 vs. UC: 1382 particles/mm. 2. , p<0.0001) was found in tissues adjacent to cemented stems, which contained mainly submicron ZrO. 2. particles. Particles containing pure Ti or Ti alloy elements (size range: 0.21 to 6.46 µm) were most abundant in tissues from the uncemented group. Here, also PE was more frequent, but accounted only for a small portion of total particles (2.8 PE/mm. 2. ). The blood concentrations of titanium (range: 3.8–138.5 microgram/L) and zirconium (cemented cases, range: 0.6–3.5 microgram/L) were highly elevated in cases with high abrasive wear and metallosis. Discussion/Conclusion. Phagocytosis of different wear particles by histiocytes induced a similar chronic inflammatory reaction in the periprosthetic tissues in both groups. ZrO. 2. particles, originating from bone cement degradation, dominated in the cemented group, while in the uncemented group the high abundance of pure Ti and Ti alloy particles of various sizes indicates wear of the metal-backed cups. The low density of polyethylene particles in the tissues suggests that they are not solely responsible for the tissue reactions and accompanying osteolysis. Our findings suggest that the chemical composition of wear particles plays a minor role in the mechanism of osteolysis. Particle size, load and ionic exposure might be more important


Bone & Joint Research
Vol. 9, Issue 3 | Pages 146 - 151
1 Mar 2020
Waldstein W Koller U Springer B Kolbitsch P Brodner W Windhager R Lass R

Aims

Second-generation metal-on-metal (MoM) articulations in total hip arthroplasty (THA) were introduced in order to reduce wear-related complications. The current study reports on the serum cobalt levels and the clinical outcome at a minimum of 20 years following THA with a MoM (Metasul) or a ceramic-on-polyethylene (CoP) bearing.

Methods

The present study provides an update of a previously published prospective randomized controlled study, evaluating the serum cobalt levels of a consecutive cohort of 100 patients following THA with a MoM or a CoP articulation. A total of 31 patients were available for clinical and radiological follow-up examination. After exclusion of 11 patients because of other cobalt-containing implants, 20 patients (MoM (n = 11); CoP (n = 9)) with a mean age of 69 years (42 to 97) were analyzed. Serum cobalt levels were compared to serum cobalt levels five years out of surgery.