Advertisement for orthosearch.org.uk
Results 1 - 20 of 27
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 86 - 86
1 Mar 2017
Weijia C Nagamine R Osano K Takayama M Todo M
Full Access

Introduction. The effect of each step of medial soft tissue releases on the external rotation angle of the femoral component was assessed during posterior stabilized total knee arthroplasty (PS-TKA) with modified gap control technique. Methods. Consecutive 840 knees were assessed. During PS-TKA, medial soft tissue release was done to obtain rectangular gap in extension using tensors/balancers. The deep fiber of medial collateral ligament (MCL) was released in all cases. No more release was done in 464 knees. Only anterior fiber of superficial MCL was released in 49 knees, and only posterior fiber of superficial MCL was released in 129 knees. Both fibers were released in 169 knees. Additional pes anserinus was released in 29 knees. Rotation angle of the femoral component was decided based on the flexion gap angle. The angle was compared among the five groups. Results. The average external rotation angle of the femoral component was 4.8°, 5.3°, 4.6°, 4.3°, 4.1°, respectively. The external rotation angle in knees after release of superficial MCL fibers and more was statistically significantly smaller compared to that in knees without release (P<0.001). Conclusion. Releases of MCL superficial fibers and more in order to obtain soft tissue balancing in extension significantly widened the medial joint gap in flexion and reduced external rotation angle of the femoral component


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 44 - 44
1 Aug 2017
Rosenberg A
Full Access

Controversy remains regarding the optimal treatment for iatrogenic injury to the medial collateral ligament (MCL) during primary total knee arthroplasty (TKA). Some authors have recommended converting to a prosthesis that provides varus/valgus constraint while others have recommended primary repair. In this study we report the results of a 45 patients who sustained intra-operative MCL injuries during primary TKA that were treated with primary repair. Of 3922 consecutive primary TKA there were 48 (1.2%) intra-operative MCL lacerations or avulsions. One patient was lost and one died before 24-month follow-up. All but one patient underwent primary repair with placement of components without varus/valgus constraint. This left 45 knees with a mean follow up of 89 months (range, 24 – 214 months). The mean HSS knee scores increased from 47 to 85 points (p<0.001). No patients had subjective complaints of instability. No patients had excessive varus/valgus laxity when tested in full extension and 30 degrees of flexion. The range of motion at the time of final follow-up averaged 110 degrees (range, 85 – 130 degrees). Five knees required treatment for stiffness with 4 knees undergoing manipulation under anesthesia and 1 knee undergoing open lysis of adhesions with polyethylene articular surface exchange. Two knees underwent revision for aseptic loosening of the tibial component. In the three knees that underwent open revision, the MCL was noted to be in continuity and without laxity. Primary repair with 6 weeks of post-operative hinged bracing after iatrogenic injury to the MCL during primary TKA was successful at preventing instability although stiffness was seen in approximately 10% of patients. The increased morbidity associated with implantation of a semi-constrained or constrained implant may be unwarranted in this situation


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 128 - 128
1 Jun 2018
Whiteside L
Full Access

When dealing with a flexion contracture, a surgeon first should consider all potential causes, specifically ligament contracture and osteophytes. Then consider the size of the femoral component and its position proximal to distal and also the posterior slope of the tibial component. Most knee flexion contractures are caused by osteophytes and tight ligaments, and once these problems are corrected, no further work needs to be done on the knee. So when the bone surface cuts are made, in general, little compensation is done in terms of positioning the femoral component proximal or distal, or in terms of sloping the tibial component (beyond the normal 3–4 degrees posterior slope), before the ligaments or osteophytes are managed. If the deep medial collateral ligament (MCL) and posterior portion of the superficial MCL are tight, a flexion contracture will almost always be present after the bone surfaces are finished. Once this is corrected with proper ligament releases and removal of osteophytes, then ligament balance and flexion contracture should be reassessed. In the very few cases that still have a flexion contracture, posterior capsule release should be done. Once this is finished, releasing the capsule from both the femur and the medial aspect of the tibia, then ligament balance is reassessed again. If flexion contracture still remains (<10% of cases), then the distal surface of the femur is resected another 4–6 mm, trial components are inserted, and flexion contracture is evaluated. If more bony resection is needed, then changing tibial slope from 4 degrees posterior slope to 0 degrees slope is another step that can be done to remove bone from extension space of the knee finally to achieve full extension. Virtually all flexion contractures, except those with severe contracture resulting from hamstring tightness, can be corrected with this method. In the valgus knee with flexion contracture, similar management is used. Knees that will not extend and remain tight on the lateral side usually are corrected with release of the posterior capsule and posterior portion of the iliotibial band. Just as on the lateral side, bone resection from the distal femur can be performed as a final effort to achieve full extension of the knee. It is worth reiterating that almost all flexion contractures are caused by ligament imbalance, and that over-resection of the distal femur at the start of these cases can easily result in hyperextension that is difficult to manage once ligaments have been balanced


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_1 | Pages 105 - 105
1 Feb 2015
Lachiewicz P
Full Access

The use of constrained condylar components (CCK) in primary total knee arthroplasty is infrequent and unusual. The usual indications are a severe fixed valgus deformity with a stretched or incompetent medial collateral ligament (MCL). This may occur in an elderly female patient with valgus osteoarthritis, advanced rheumatoid arthritis, or other less common disorders: polio, Parkinson's disease, and Paget's disease involving the knee. It may also be seen in younger patients with post-traumatic arthritis. Beware of the patient with a prior history of a knee injury in which staples were placed at the medial epicondyle of the femur or proximal tibia, indicating likely MCL injury, or a knee with extensive medial joint heterotopic ossification. An unusual indication for a primary CCK component is inadvertent injury or sectioning of the MCL during the procedure. This can occur with over-zealous medial ligament release or division with the saw during the posterior femoral condylar or proximal tibial resection. This has been reported to occur in <1% to 2.7% of knees. Treatment alternatives are to attempt repair and brace the knee or perform “internal bracing” with a CCK component. The author strongly favors the use of CCK components in this situation. We permit early full-weightbearing and range of motion, without restrictions. Careful intraoperative attention to component rotation is crucial to avoid patellar complications. The results of CCK components by the author and others have demonstrated a high rate of survival at 10 years, even in younger patients


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 122 - 122
1 Jun 2018
Gonzalez Della Valle A
Full Access

Adequate soft tissue balance at the time of total knee arthroplasty (TKA) prevents early failure. In cases of varus deformity, once the medial osteophytes have been resected, a progressive release of the medial soft tissue sleeve (MSS) from the proximal medial tibia is needed to achieve balance. The “classic” medial soft tissue release technique, popularised by John Insall et al., consists of a sharp subperiosteal dissection from the proximal medial tibia that includes superficial and deep medial collateral ligament (MCL), semimembranosus tendon, posteromedial capsule, along with the pes anserinus tendons, if needed. However, this technique allows for little control over releases that selectively affect the flexion and extension gaps. When severe deformity is present, an extensive MSS release can cause iatrogenic medial instability and the need to use a constrained implant. It has been suggested that the MSS can be elongated by performing selective releases. This algorithmic approach includes the resection of the posterior osteophytes as the initial balancing gesture. If additional MSS release is necessary in extension, a subperiosteal release of the posterior aspect of the MSS is performed with electrocautery, detaching the posterior aspect of the deep MCL, posteromedial capsule and semimembranosus tendon for the proximal and medial tibia. Dissection is rarely extended more than 1.5 cm distal to the joint line. If additional release is necessary in extension, the medial compartment is tensioned with a laminar spreader and multiple needle punctures (generally less than 8) are performed in the taut portion of the MSS using an 18G or 16G needle. If additional release is necessary to balance the flexion gap, multiple needle punctures in the anterior aspect of the MSS are performed. This stepwise approach to releasing the MSS in a patient with a varus deformity allows the surgeon to target areas that selectively affect the flexion and extension gaps. Its use has resulted in diminished use of constrained TKA constructs and subsequent cost savings. We have not seen an increase in post-operative instability developing within the first post-operative year. We recommend caution when implementing this technique. Unlike the traditional release method, pie-crusting is likely technique-dependent and failure can occur within the MCL itself. Due to the critical importance of the MCL in knee stability, further research and continuous follow up of patients undergoing TKA with this technique are warranted. Intra-operative sensing technology may be useful to quantitate the effect of pie-crusting on the compartmental loads and overall knee balance


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_17 | Pages 45 - 45
1 Nov 2016
Jacobs J
Full Access

Controversy remains regarding the optimal treatment for iatrogenic injury to the medial collateral ligament (MCL) during primary total knee arthroplasty (TKA). Some authors have recommended converting to a prosthesis that provides varus/valgus constraint while others have recommended primary repair. In this study, we report the results of 45 patients who sustained intra-operative MCL injuries during primary TKA that were treated with primary repair. Of 3922 consecutive primary TKA there were 48 (1.2%) intra-operative MCL lacerations or avulsions. One patient was lost and one died before 24 months follow up. All but one patient underwent primary repair with placement of components without varus/valgus constraint. This left 45 knees with a mean follow up of 89 months (range, 24 to 214 months). The mean HSS knee scores increased from 47 to 85 points (p<0.001). No patients had subjective complaints of instability. No patients had excessive varus/valgus laxity when tested in full extension and 30 degrees of flexion. The range of motion at the time of final follow-up averaged 110 degrees (range, 85 to 130 degrees). Five knees required treatment for stiffness with 4 knees undergoing manipulation under anaesthesia and 1 knee undergoing open lysis of adhesions with polyethylene articular surface exchange. Two knees underwent revision for aseptic loosening of the tibial component. In the three knees that underwent open revision, the MCL was noted to be in continuity and without laxity. Primary repair with 6 weeks of post-operative hinged bracing after iatrogenic injury to the MCL during primary TKA was successful at preventing instability although stiffness was seen in approximately 10% of patients. The increased morbidity associated with implantation of a semi-constrained or constrained implant may be unwarranted in this situation


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 9 - 9
1 Mar 2017
Sim J Lee B
Full Access

Introduction. The acquisition of proper soft tissue balance is one of the crucial factors for preventing long-term failure and obtaining successful treatment outcomes of total knee arthroplasty (TKA). Medial collateral ligament (MCL) release is essential for encountering severe varus deformity. However, conventional subperiosteal MCL release for severe varus deformity can cause the complete detachment of MCL. This study compared retrospectively the results of complete distal release of the MCL with those of medial epicondylar osteotomy during ligament balancing in varus knee TKA. Methods. This study retrospectively reviewed 9 cases of complete distal release of the MCL (group 1) and 11 cases of medial epicondylar osteotomy (group 2) which were used to correct severe medial contracture. The clinical assessment was based on the American Knee Society knee score (KS), function score (FS), and the ROM preoperatively and at the final follow-up. For the radiological assessment, the femorotibial angle was measured based on the whole lower extremity radiograph preoperatively and at the final follow-up. Three months after surgery and at the final follow-up, medial instability was assessed using the valgus stress radiographs, in which the contralateral side was compared using Telos (Telos, Weterstadt, Germany). Results. The mean follow-up periods were 46.5 months (range, 36 to 78 months) and 39.8 months (range, 32 to 65 months), respectively. There were no significant differences in the clinical results between the two groups. However, the valgus stress radiograph revealed significant differences in medial instability. (Figure 1) In complete distal release of the MCL, some stability was obtained by repair and bracing but the medial instability could not be removed completely. (Figure 1). Conclusions. This study showed that medial instability could not be removed completely in the complete MCL distal release group. Medial epicondylar osteotomy for a varus deformity in TKA could provide constant medial stability and be a useful ligament balancing technique. For any figures or tables, please contact authors directly (see Info & Metrics tab above).


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 49 - 49
1 Feb 2020
Gustke K Morrison T
Full Access

Introduction. In total knee arthroplasty (TKA), component realignment with bone-based surgical correction (BBSC) can provide soft tissue balance and avoid the unpredictability of soft tissue releases (STR) and potential for more post-operative pain. Robotic-assisted TKA enhances the ability to accurately control bone resection and implant position. The purpose of this study was to identify preoperative and intraoperative predictors for soft tissue release where maximum use of component realignment was desired. Methods. This was a retrospective, single center study comparing 125 robotic-assisted TKAs quantitatively balanced using load-sensing tibial trial components with BBSC and/or STR. A surgical algorithm favoring BBSC with a desired final mechanical alignment of between 3° varus and 2° valgus was utilized. Component realignment adjustments were made during preoperative planning, after varus/valgus stress gaps were assessed after removal of medial and lateral osteophytes (pose capture), and after trialing. STR was performed when a BBSC would not result in knee balance within acceptable alignment parameters. The predictability for STR was assessed at four steps of the procedure: Preoperatively with radiographic analysis, and after assessing static alignment after medial and lateral osteophyte removal, pose capture, and trialing. Cutoff values predictive of release were obtained using receiver operative curve analysis. Results. STR was necessary in 43.5% of cases with medial collateral ligament (MCL) release being the most common. On preoperative radiographs, a medial tibiofemoral angle (mTFA) ≤177° predicted MCL release (AUC = 0.76. p< 0.01) while an mTFA ≥188° predicted ITB release (AUC = 0.79, p <0.01). Intraoperatively after removal of osteophytes, a robotically assessed mechanical alignment (MA) ≥8° varus predicted MCL release (AUC = 0.84. p< 0.01) while a MA ≥2° valgus (AUC = 0.89, p< 0.01) predicted ITB release. During pose-capture, in medially tight knees, an extension gap imbalance ≥2.5mm (AUC = 0.82, p <0.01) and a flexion gap imbalance ≥2.0mm (AUC = 0.78, p <0.01) predicted MCL release while in laterally tight knees, any extension or flexion gap imbalance >0 mm predicted ITB release (AUC = 0.84, p <0.01 and AUC = 0.82, p <0.01 respectively). During trialing, in medially tight knees, a medial>lateral extension load imbalance ≥18 PSI (AUC = 0.84. p< 0.01) and a flexion load imbalance ≥ 35 PSI (AUC = 0.83, p< 0.01) predicted MCL release while, in laterally tight knees, a lateral>medial extension load imbalance ≥3 PSI (AUC = 0.97, p< 0.01) or flexion load imbalance ≥ 9.5 PSI (AUC = 0.86, p< 0.01) predicted ITB release. Of all identified predictors, load imbalance at trialing had the greatest positive predictive value for STR. Conclusion. There are limitations to the extent that TKA imbalance that can be corrected with BBSC alone if one has a range of acceptable alignment parameters. The ability to predict STR improves from pose-capture to trialing stages during detection of load imbalance. Perhaps this may be due to posterior osteophytes that are still present at pose capture. Further investigation of the relationship between the presence, location and size of posterior osteophytes and need for STR during TKA is necessary


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 135 - 135
1 Feb 2017
Geller J Herschmiller T Cunn G Murtaugh T Gardner T
Full Access

Traditional medial soft tissue release for balancing of the varus knee in total knee arthroplasty can lead to an inconsistent reduction in medial tension. The purpose of this study is to establish whether sequential needle puncturing of the medial collateral ligament (MCL) can be a safe and predictable method for medial release. Total knee prostheses were implanted in 14 cadaveric specimens by a single surgeon. Medial tension was measured in flexion and extension by a pressure sensor with implants in place, and calipers after removal of implants and gap distraction under constant tension. Measurements were performed after each of 5 sets of 5 punctures of the MCL with an 18-gauge needle and following 5 transverse perforations with an 11-blade. A consistent valgus force was applied after each set of MCL punctures with a pneumatic cylinder. Pearson's correlation was used to compare pressure sensor measurement with gap distance measurement under tension. The pressure as detected by the sensor after each set of 5 punctures was analyzed by a repeated measures two-way ANOVA and a Tukey multiple comparisons test to determine a significant decreases between puncture sets. The pressure sensor device correlated more closely with systematic tissue release (r=0.59 for % change from baseline) than did measurements of gap increase under tension (r= −0.22). All knees had ≤5mm of medial opening with up to 25 needle punctures. Two knees had <5mm of medial opening in flexion after blade perforation. The mean pressure decreases in 90 degrees flexion, mid-flexion and extension were 11.2, 9.4 and 9.9 lbs respectively after 5 needle punctures and 8.1, 11.5 and 9.6 lbs between 5 and 15. Significant pressure decreases were seen after 5 and 10 needle punctures and again after blade perforation (p<0.05). Needle puncture of the deep and superficial MCL leads to a significant and reliable decrease in medial tension over the first 15, with diminishing effect up to 25 punctures. This method may be employed when up to 20 lbs reduction in medial pressure is desired. Blade perforation after needle puncture should be approached with caution


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_1 | Pages 106 - 106
1 Feb 2015
Jacobs J
Full Access

Controversy remains regarding the optimal treatment for iatrogenic injury to the medial collateral ligament (MCL) during primary total knee arthroplasty (TKA). Some authors have recommended converting to a prosthesis that provides varus/valgus constraint while others have recommended primary repair. In this study we report the results of a 45 patients who sustained intraoperative MCL injuries during primary TKA that were treated with primary repair. Of 3922 consecutive primary TKA there were 48 (1.2%) intraoperative MCL lacerations or avulsions. One patient was lost and one died before 24 months follow up. All but one patient underwent primary repair with placement of components without varus/valgus constraint. This left 45 knees with a mean follow up of 89 months (range, 24–200). The mean HSS knee scores increased from 46.8 to 84.8 points (p<0.001). No patients had subjective complaints of instability. No patients had excessive varus/valgus laxity when tested in full extension and 30 degrees of flexion. The range of motion at the time of final follow-up averaged 110 degrees (range, 85 degrees to 130 degrees). Five knees required treatment for stiffness with 4 knees undergoing manipulation under anesthesia and 1 knee undergoing open lysis of adhesions with polyethylene articular surface exchange. Two knees underwent revision for aseptic loosening of the tibial component. In the three knees that underwent open revision, the MCL was noted to be in continuity and without laxity. Primary repair with 6 weeks of postoperative hinged bracing after iatrogenic injury to the MCL during primary TKA was successful at preventing instability although stiffness was seen in approximately 10% of patients. The increased morbidity associated with implantation of a semiconstrained or constrained implant may be unwarranted in this situation


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 87 - 87
1 May 2016
Kataoka T Iizawa N Mori A Oshima Y Matsui S Takai S
Full Access

Introduction. Many factors can influence post-operative kinematics after total knee arthroplasty (TKA). These factors include intraoperative surgical conditions such as ligament release or quantity of bone resection as well as differences in implant design. Release of the medial collateral ligament (MCL) is commonly performed to allow correction of varus knee. Precise biomechanical knowledge of the individual components of the MCL is critical for proper MCL release during TKA. The purpose of this study was to define the influences of the deep medial collateral ligament (dMCL) and the posterior oblique ligament (POL) on valgus and rotatory stability in TKA. Materials and Methods. This study used six fresh-frozen cadaveric knees with intact cruciate ligaments. All TKA procedures were performed by the same surgeon using CR-TKA with a CT-free navigation system. Each knee was tested at 0°, 20°, 30°, 60°, and 90° of flexion. One sequential sectioning sequence was performed on each knee, beginning with an intact knee (S0), and thereafter femoral arthroplasty only (S1), tibial arthroplasty (S2), release of the dMCL (S3), and finally, release of the POL (S4). The same examiner applied all external load of 10 N-m valgus and a 5 N-m internal and external rotation torque at each flexion angle for the each cutting state. All data were analyzed statistically using one-way ANOVA and we investigated the correlation between the medial gap and the rotation angle. A significant difference was determined to be present for P < .05. Results. There were no correlation between the medial gap and the rotation angle in S0. A moderate correlation was found in S1 at 0° and 20°, and a considerable correlation was found in S2 at 90°. There was a correlation at all angles in S4, and especially strong at 20°, 60°, 90°. Conclusion. From this study, there were no correlation between medial knee instability and total rotation angles after performing TKA only by releasing dMCL, but by adding POL release, there were correlation in all angles. Therefore, medial knee instability caused by excessive release of the main medial knee structures may promote rotational instability


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 354 - 354
1 Dec 2013
Iizawa N Mori A Matsui S Oba R Ito T Takai S
Full Access

Purpose:. Biomechanical knowledge of the medial collateral ligament (MCL) is important for MCL release during knee arthroplasty. The purpose of this study was to define the influences of the deep medial collateral ligament (dMCL) and the posterior oblique ligament (POL) on valgus and rotatory stability in knee arthroplasty. Methods:. Six cadaveric knees were divided into 2 groups with unique sequential sectioning sequences of the dMCL and the POL. Group A (n = 2) first received femoral arthroplasty only, and thereafter sequentially received medial half tibial resection with spacer, ACL cut, dMCL cut, POL cut, and finally tibial arthroplasty. Group B (n = 4) first received femoral arthroplasty only, and thereafter sequentially received medial half tibial resection with spacer, ACL cut, tibial arthroplasty, dMCL cut, and finally, POL cut. A CT-free navigation system monitored motion after application of valgus loads (10 N-m) and internal and external rotation torques (5 N-m) at 0°, 20°, 30°, 60°, and 90°of knee flexion. Results:. There were no significant differences in medial gaps under valgus loads after cutting dMCL, but significant differences were seen in medial gaps after cutting POL. Internal rotation angles increased after cutting POL under internal rotation torques at over 20°of knee flexion. External rotation angles under external rotation torques increased after cutting dMCL at 90°. In addition, external rotation angles further increased after cutting POL. Accordingly, while increases of medial gap size and rotatory instability were not clearly recognized with the sectioning of the dMCL, significant increases of valgus and rotatory instability were seen on sectioning of the POL


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 330 - 330
1 Mar 2013
Sim JA
Full Access

During the ligament balancing for the severe medial contracture in varus knee TKA, complete distal release of the medial collateral ligament (MCL) or medial epicondylar osteotomy can be necessary in a large amount of correction. This study reviewed retrospectively 8 cases of complete distal release of the MCL (group 1) and 11 cases of medial epicondylar osteotomy (group 2) which was used to correct the severe medial contracture. In the complete distal release of the MCL, we performed the repair and used the brace for medial stability. The mean ages were 71.1-year-old and 71.5-year-old, respectively. The mean follow-up periods were 41.1 months and 21.9 months, respectively. Clinical outcome measures included Knee Society score (KSS), Function scrore (FS), and range of motion (ROM) at final follow up. Radiological outcomes measured medial instability by valgus stress radiograph at 3 months after operation and final follow up. There were no significant differences in clinical results between both two groups, for KSS (95.1 vs 91.1), FS (82.5 vs 88.2), and ROM (114.4Ëš vs 118.8Ëš). However, the medial instability of group 1 was larger than that of group 2 in the valgus stress radiograph (Figure 1). In terms of the medial stability, medial epicondylar osteotomy might be better than complete distal release of the MCL in varus TKA. Even though some some stability was obtained by MCL repair and bracing in complete distal release of the MCL, the medial instability was still remained. However, medial epicondylar osteotomy could give constant medial stability overall


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 15 - 15
1 Nov 2016
Thornton G Lemmex D Ono Y Hart D Lo I
Full Access

Lubricin is a proteoglycan that is a boundary lubricant in synovial joints and both a surface and collagen inter-fascicular lubricant in ligaments. The purpose of this study was to characterise the mRNA levels for lubricin in the anterior cruciate ligament (ACL), posterior cruciate ligament (PCL), medial collateral ligament (MCL), and lateral collateral ligament (LCL) in aging and surgically-induced menopausal rabbits. We hypothesised that lubricin mRNA levels would be increased in ligaments from aging and menopausal rabbits compared with ligaments from normal rabbits. All four knee ligaments (ACL, PCL, MCL, LCL) were isolated from normal (1-year-old rabbits, n=8), aging (3-year-old rabbits, n=6), and menopausal (1-year-old rabbits fourteen weeks after surgical ovariohysterectomy, n=8) female New Zealand White rabbits. RT-qPCR was used to evaluate the mRNA levels for lubricin normalised to the housekeeping gene 18S. After removing outliers, data for normal, aging, and menopausal rabbits for each knee ligament (ACL, PCL, MCL, LCL) were compared using ANOVA with linear contrasts or Kruskal-Wallis test with Conover post-hoc analysis. For ACLs, the mRNA levels for lubricin were increased in menopausal and aging rabbits compared with normal rabbits (p<0.056). For PCLs, trends for increased lubricin mRNA levels were found when comparing menopausal and aging rabbits with normal rabbits (p<0.092). For MCLs, the mRNA levels for lubricin were increased in menopausal and aging rabbits compared with normal rabbits (p<0.050). For LCLs, no differences in lubricin mRNA levels were detected comparing the three groups. For all four knee ligaments (ACL, PCL, MCL, LCL), no differences in lubricin mRNA levels were detected comparing the ligaments from menopausal rabbits with those from aging rabbits. Lubricin plays a role in collagen fascicle lubrication in ligaments (1,2). Increased lubricin gene expression was associated with mechanical changes (including decreased modulus and increased failure strain) in the aging rabbit MCL (3). Detection of similar molecular changes in the ACL, and possibly the PCL, may indicate that their mechanical properties may also change as a result of increased lubricin gene expression, thereby potentially pre-disposing these ligaments to damage accumulation. Compared to aging ligaments, aging tendons exhibited decreased lubricin gene and protein expression, and increased stiffness (4). Although opposite changes than aging ligaments, these findings support the relationship between lubricin and modulus/stiffness. The similarities between ligaments in the aging and menopausal groups may suggest that surgically-induced menopause results in a form of accelerated aging in the rabbit ACL, MCL and possibly PCL


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 46 - 46
1 Dec 2013
Delport H Labey L De Corte R Innocenti B Sloten JV Bellemans J
Full Access

Passive knee stability is provided by the soft tissue envelope which resists abnormal motion. There is a consensus amongst orthopedic surgeons that a good outcome in TKA requires equal tension in the medial and the lateral compartment of the knee joint, as well as equal tension in the flexion and extension gap. The purpose of this study was to quantify the ligament laxity in the normal non-arthritic knee before and after standard posterior-stabilized total knee arthroplasty (PS-TKA). We hypothesized that the medial collateral ligament (MCL) and the lateral collateral ligament (LCL) will show minimal changes in length when measured directly by extensometers in the native human knee during varus/valgus laxity testing. We also hypothesized that due to differences in material properties and surface geometry, native laxity is difficult to be completely reconstructed using contemporary types of PS-TKA. Methods:. A total of 6 specimens were used to perform this in vitro cadaver test using extensometers to provide numerical values for laxity and varus-valgus tilting in the frontal plane. See Fig. 1 The test set-up. Findings:. This study enabled a very precise measurement of varus and valgus laxity as compared with the clinical assessment which is a subjective measure. The strains in both ligaments in the replaced knee were different from those in the native knee. Both ligaments were stretched in extension, in flexion the MCL tends to relax and the LCL remains tight. Fig. 2 Initial and maximal strain values in the MCL during valgus and varus laxity testing in different flexion angles. a: intact knee, b: replaced knee. and Fig. 3 Initial and maximal strain values in the LCL during valgus and varus laxity testing indifferent flexion angles. a: intact knee, b: replaced knee. Interpretation:. As material properties and surface geometry of the replaced knee add stiffness to the joint, we recommend when using a this type of PS-TKA to avoid overstuffing the joint in order to obtain varus/valgus laxity close to the native joint


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_16 | Pages 27 - 27
1 Oct 2014
Hunt N Ghosh K Blain A Athwal K Rushton S Longstaff L Amis A Deehan D
Full Access

Instability is reported to account for around 20% of early TKR revisions. The concept of restoring the “Envelope of Laxity” (EoL) mandates a balanced knee through a continuous arc of functional movement. We therefore hypothesised that a single radius (SR) design should confer this stability since it has been proposed that the SR promotes normal medial collateral ligament (MCL) function with isometric stability throughout the full arc of motion. Our aim was to characterise the EoL and stability offered by a SR cruciate retaining (CR)-TKR, which maintains a SR from 10–110° flexion. This was compared with that of the native knee throughout the arc of flexion in terms of anterior, varus/valgus and internal/ external laxity to assess whether a SR CR-TKR design can mimic normal knee joint kinematics and stability. Eight fresh frozen cadaveric lower limbs were physiologically loaded on a custom jig. The operating surgeon performed anterior drawer, varus/ valgus and internal/external rotation tests to determine ‘maximum’ displacements in 1) native knee and 2) single radius CR-TKR (Stryker Triathlon) at 0°, 30°, 60°, 90° and 110° flexion. Displacements were recorded using computer navigation. Significance was determined by linear modelling (p≤0.05). The key finding of this work was that the EoL offered by the SR CR-TKR was largely equivalent to that of the native knee from 0–110°. The EoL increased significantly with flexion angle for both native and replaced knees. Overall, after TKR anterior laxity was comparable with the native knee, whilst total varus-valgus and internal-external rotational laxities reduced by only 1°. However, separated varus and valgus laxities at 110° significantly increased after TKR as did anterior laxity at 30° flexion. In conclusion, the overall EoL offered by the SR CR-TKR is comparable to that of the native knee. In the absence of soft tissue deficiency, the implant appears to offer reliable and reproducible stability throughout the functional range of movement, with exception of anterior laxity at 30° and varus and valgus laxity when the knee approaches high flexion. These shortcomings should offer scope for future work


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 47 - 47
1 May 2016
Iizawa N Mori A Oshima Y Matsui S Kataoka T Takai S
Full Access

Introduction. Many factors can influence post-operative kinematics after total knee arthroplasty (TKA). These factors include intraoperative surgical conditions such as ligament release or quantity of bone resection as well as differences in implant design. Release of the medial collateral ligament (MCL) is commonly performed to allow correction of varus knee. Precise biomechanical knowledge of the individual components of the MCL is critical for proper MCL release during TKA. The purpose of this study was to define the influences of the deep medial collateral ligament (dMCL) and the posterior oblique ligament (POL) on kinematics in TKA. Materials and Methods. This study used six fresh-frozen cadaveric knees with intact cruciate ligaments. All TKA procedures were performed by the same surgeon using CR-TKA with a CT-free navigation system. Each knee was tested at 0°, 20°, 30°, 60°, and 90° of flexion. One sequential sectioning sequence was performed on each knee, beginning with femoral arthroplasty only (S1), and thereafter sequentially; medial half tibial resection with spacer (S2), ACL cut (S3), tibial arthroplasty (S4), release of the dMCL (S5), and finally, release of the POL (S6). The same examiner applied all external loads of 10 N-m valgus and 5 N-m internal and external rotation torques at each flexion angle and for each cut state. The AP locations of medial and lateral condyles were determined as the lowest point on each femoral condyle. All data were analyzed statistically using paired t-test. A significant difference was determined to be present for P < .05. Results. All knees showed that posterior femoral translation of the lateral condyle from 0° to 90° was greater than posterior femoral translation of the medial condyle at any step or any tested angle. Posterior femoral translation of the medial femoral condyle under valgus load significantly increased after S4 compared with that at S1 at 20°, 30° and 90°, and after S5 compared with that at S1 at 20° and 30°. Thereafter, significant increase in posterior translation of the medial condyle was seen, at 30° after S6 compared with S1. Posterior femoral translation of the medial femoral condyle under external rotation torque significantly increased after S4 at 90°, and S6 at 0° compared with that at S1. Posterior femoral translation of the medial femoral condyle under internal rotation torque significantly increased after S2 at 0°, after S4 at 60° and 90°, after S5 at 0°, and after S6 at 60° compared with S1. Conclusion. From this study we concluded that retaining of the medial knee structures preserves the valgus and rotatory stability of the knee after TKA. Accordingly, to devise a surgical approach of retaining the dMCL and POL has a possibility to improve outcomes after primary TKA


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_1 | Pages 76 - 76
1 Feb 2015
Berend K
Full Access

Enhanced appreciation of normal knee kinematics and the inability to replicate these in the replaced total knee has led to increased enthusiasm for partial knee arthroplasty by some. These arthroplasties more closely replicate normal kinematics since they inherently preserve the anterior cruciate ligament (ACL). Indications for medial UKA are: anteromedial osteoarthritis with an intact ACL, posterior cruciate ligament, and medial collateral ligament (MCL), full thickness cartilage loss, and correctable deformity demonstrated radiographically with valgus stress view; full thickness cartilage laterally with no central ulcer; <15 degrees of flexion contracture, < 15 degrees varus and > 90 degrees flexion. The state of the patellofemoral joint, chondrocalcinosis, obesity, age and activity level are NOT contraindications to medial mobile-bearing UKA. The only certain contraindications are the presence of inflammatory arthritis or a history of previous high tibial osteotomy (HTO). Advantages of medial UKA are that it preserves undamaged structures, it is a minimally invasive technique with low incidence of perioperative morbidity, preservation of the cruciate mechanism results in more “normal” kinematics versus TKA, it normalises contact forces and pressures in the patellofemoral joint, and it provides better range of motion than TKA. Furthermore, medial UKA results in better function than TKA in gait studies, with demanding activities, such as climbing stairs, having a better “feel”. Pain relief with medial UKA is equivalent or better than TKA, and morbidity and mortality are decreased compared with TKA, as well as venous thromboembolism. Recommended preoperative imaging studies consist of plain radiographs with the following views obtained: standing AP, PA flexed, lateral, Merchant or axial, and valgus stress. There are several surgical perils associated with performing medial UKA. First, in regard to patient selection, avoid medial UKA in patients with residual hyaline cartilage – the joint must be bone on bone. Second, perform a conservative tibial resection with respect to depth to prevent tibial collapse as well as excessive overload of weakened bone, and avoid excessive posterior slope. Perform the tibial resection coplanar with tibial spine/ACL insertion to maximise tibial coverage. Avoid overcorrection of deformity. Do not perform a medial release. Balance flexion/extension gaps meticulously. For mobile-bearing designs, remove all impinging osteophytes. Over 55 published studies report results with mobile-bearing medial UKA, with survival ranging 63.2–100% at mean follow-up ranging from 1 to 17.2 years


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_1 | Pages 219 - 219
1 Jan 2013
Murray D Jain N Kemp S
Full Access

Introduction. Knee injuries are common amongst footballers. The aim of this study was to establish frequency and variation of knee injuries within one English Premier League (EPL) professional football club over two seasons, to assess number of days missed due to injury, and analyse current treatment regimen for each injury type. Method. Data was collected prospectively for injuries suffered by players between 2009 and 2011, spanning two EPL seasons at one EPL club. Demographics were recorded along with various factors influencing injury, including playing surface, pitch condition, dominant side, type of injury, ability to continue playing, and mechanism of injury. Time taken for return to play, and treatment received was recorded. Results. 35 injuries occurred that were severe enough to cause players to miss at least one competitive match. The commonest injury was to the medial collateral ligament (MCL) in 34%. Patella tendon injuries were seen in 29%, other injuries included meniscus tears, ACL ruptures, and osteochondral defects. All grade II MCL Injuries received sclerosant injections. 40% of patella tendon injuries were given plasma-rich protein (PRP) injections, and 30% underwent surgery. The mean recovery time following MCL and patella tendon injuries was 44 days and 77 days respectively. 60% of injuries were sustained during training and 40% were suffered in competitive games. 26% were recurring injuries, recurrent meniscus and patella tendon injuries took twice as long to recover compared to the initial injury. Conclusion. Our findings suggest that MCL and patella tendon injuries are the most common knee injuries amongst professional footballers and that meniscus tears and ligament ruptures are relatively rare in comparison. Injuries appear to occur more frequently during training. A high proportion of injuries in the study received injection therapy in the form of PRP or sclerosant. The study suggests recurrent injuries can prolong recovery two-fold


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 256 - 256
1 Mar 2013
Matsui S Takai S
Full Access

Quantitative knowledge on the anatomy of the medial collateral ligament (MCL) is important for preventing MCL damage during unicompartmental knee arthroplasty (UKA). The objective of this study was to quantitatively determine the morphology of the medial capsule and deep MCL on tibias. METHODS. 24 cadaveric human knees (control: 19, OA: 5) were dissected to investigate the deep MCL and capsule anatomy. The specimens were fixed in full extension and this position was maintained during the dissection and morphometric measurements. The distance from the tibial insertion sites of the medial capsule including deep MCL to the medial joint surface were measured at anterior, middle, and posterior sites. Posterior capsule slope and posterior tibia slope to the anterior tibia cortex was also measured. RESULTS. In control, the distance from the tibia insertion sites of the medial capsule including deep MCL to the anterior 1/3, middle 1/3, and posterior 1/3 of medial joint surface were 12.5 ± 1.5 mm and 8.0 ± 1.6 mm and 9.4 ± 1.6 mm, respectively. Posterior capsule slope and posterior tibia slope to the anterior tibia cortex were 6.3 ± 3.3 degree and 12.7 ± 2.1 degree, respectively. In OA, the distance from the tibia insertion sites of the medial capsule including deep MCL to the anterior 1/3, middle 1/3, and posterior 1/3 of medial joint surface were 14.0 ± 1.7 mm and 9.6 ± 1.9 mm and 10.8 ± 1.5 mm, respectively. Posterior capsule slope and posterior tibia slope to the anterior tibia cortex were 8.0 ± 3.5 degree and 14.5 ± 2.2 degree, respectively. CONCLUSIONS. The morphologic data on the medial capsule and deep MCL may provide useful information for preventing MCL damage during UKA surgical procedure