Advertisement for orthosearch.org.uk
Results 1 - 20 of 59
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 104 - 104
2 Jan 2024
der Broeck L Geurts J Qiu S Poeze M Blokhuis T
Full Access

The optimal treatment strategy for post-traumatic long bone non-unions is subject of an ongoing discussion. At the Maastricht University Medical Center (MUMC+) the induced membrane technique is used to treat post-traumatic long bone non-unions. This technique uses a multimodal treatment algorithm involving bone marrow aspirate concentrate (BMAC), the reamer-irrigator-aspirator (RIA) and P-15 bioactive peptide (iFactor, Cerapedics). Bioactive glass (S53P4 BAG, Bonalive) is added when infection is suspected. This study aims to objectify the effect of this treatment algorithm on the health-related quality of life (HRQoL) of patients with post-traumatic long bone non-unions. We hypothesized that HRQoL would improve after treatment. From January 2020 to March 2023, consecutive patients who were referred to a multidisciplinary (trauma, orthopaedic and plastic surgery) non-union clinic at the MUMC+, The Netherlands, were evaluated using the Non-Union Scoring System (NUSS). The EQ-5D-5L questionnaire and the Lower Extremity Functional Scale (LEFS) were employed to obtain HRQoL outcomes both prior to and subsequent to surgery, with a follow-up at 6, 18 and 35 weeks. Seventy-six patients were assessed at baseline (T0), with a mean NUSS of 40 (± 13 SD). Thirty-eight patients had their first follow-up, six weeks after surgery (T1). Thirty-one patients had a second follow-up at 18 weeks (T2), and twenty patients had the third follow-up at 35 weeks (T3). The EQ-5D index mean at baseline was 0.480, followed by an index of 0.618 at T1, 0.636 at T2, and 0.702 at T3. A significant difference was found in the HRQoL score between T0 and T1, as well as T2 and T3 (p<0.001; p=0.011). The mean LEFS significantly increased from 26 before intervention to 34, 39, and 43 after treatment (p<0.001; p=0.033; p=0.016). This study demonstrated a significant improvement in the health-related quality of life of patients with post-traumatic long bone non-unions after the standardized treatment algorithm following the induced membrane technique


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 17 - 17
1 Dec 2022
Ciapetti G Granchi D Perut F Spinnato P Spazzoli B Cevolani L Donati DM Baldini N
Full Access

Fracture nonunion is a severe clinical problem for the patient, as well as for the clinician. About 5-20% of fractures does not heal properly after more than six months, with a 19% nonunion rate for tibia, 12% for femur and 13% for humerus, leading to patient morbidity, prolonged hospitalization, and high costs. The standard treatment with iliac crest-derived autologous bone filling the nonunion site may cause pain or hematoma to the patient, as well as major complications such as infection. The application of mesenchymal autologous cells (MSC) to improve bone formation calls for randomized, open, two-arm clinical studies to verify safety and efficacy. The ORTHOUNION * project (ORTHOpedic randomized clinical trial with expanded bone marrow MSC and bioceramics versus autograft in long bone nonUNIONs) is a multicentric, open, randomized, comparative phase II clinical trial, approved in the framework of the H2020 funding programme, under the coordination of Enrique Gòmez Barrena of the Hospital La Paz (Madrid, Spain). Starting from January 2017, patients with nonunion of femur, tibia or humerus have been actively enrolled in Spain, France, Germany, and Italy. The study protocol encompasses two experimental arms, i.e., autologous bone marrow-derived mesenchymal cells after expansion (‘high dose’ or ‘low dose’ MSC) combined to ceramic granules (MBCP™, Biomatlante), and iliac crest-derived autologous trabecular bone (ICAG) as active comparator arm, with a 2-year follow-up after surgery. Despite the COVID 19 pandemic with several lockdown periods in the four countries, the trial was continued, leading to 42 patients treated out of 51 included, with 11 receiving the bone graft (G1 arm), 15 the ‘high dose’ MSC (200x10. 6. , G2a arm) and 16 the ‘low dose’ MSC (100x10. 6. , G2b arm). The Rizzoli Orthopaedic Institute has functioned as coordinator of the Italian clinical centres (Bologna, Milano, Brescia) and the Biomedical Science and Technologies and Nanobiotechnology Lab of the RIT Dept. has enrolled six patients with the collaboration of the Rizzoli’ 3rd Orthopaedic and Traumatological Clinic prevalently Oncologic. Moreover, the IOR Lab has collected and analysed the blood samples from all the patients treated to monitor the changes of the bone turnover markers following the surgical treatment with G1, G2a or G2b protocols. The clinical and biochemical results of the study, still under evaluation, are presented. * ORTHOUNION Horizon 2020 GA 733288


Bone & Joint Research
Vol. 5, Issue 7 | Pages 287 - 293
1 Jul 2016
Ismail H Phedy P Kholinne E Djaja YP Kusnadi Y Merlina M Yulisa ND

Objectives. To explore the therapeutic potential of combining bone marrow-derived mesenchymal stem cells (BM-MSCs) and hydroxyapatite (HA) granules to treat nonunion of the long bone. Methods. Ten patients with an atrophic nonunion of a long bone fracture were selectively divided into two groups. Five subjects in the treatment group were treated with the combination of 15 million autologous BM-MSCs, 5g/cm. 3. (HA) granules and internal fixation. Control subjects were treated with iliac crest autograft, 5g/cm. 3. HA granules and internal fixation. The outcomes measured were post-operative pain (visual analogue scale), level of functionality (LEFS and DASH), and radiograph assessment. Results. Post-operative pain evaluation showed no significant differences between the two groups. The treatment group demonstrated faster initial radiographic and functional improvements. Statistically significant differences in functional scores were present during the first (p = 0.002), second (p = 0.005) and third (p = 0.01) month. Both groups achieved similar outcomes by the end of one-year follow-up. No immunologic or neoplastic side effects were reported. Conclusions. All cases of nonunion of a long bone presented in this study were successfully treated using autologous BM-MSCs. The combination of autologous BM-MSCs and HA granules is a safe method for treating nonunion. Patients treated with BM-MSCs had faster initial radiographic and functional improvements. By the end of 12 months, both groups had similar outcomes. Cite this article: H.D. Ismail, P. Phedy, E. Kholinne, Y. P. Djaja, Y. Kusnadi, M. Merlina, N. D. Yulisa. Mesenchymal stem cell implantation in atrophic nonunion of the long bones: A translational study. Bone Joint Res 2016;5:287–293. DOI: 10.1302/2046-3758.57.2000587


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 193 - 193
1 Jul 2014
Tovar N Sobieraj M Witek L Smay J Coelho P
Full Access

Summary. A specialised 3D- printed scaffold, combined with fillers and bioactive molecules, can be designed and characterised to demonstrate the efficacy of synthetic, off-the-shelf and custom fabricated scaffolds for the repair of long bone defects. Introduction. Using specialised three-dimensional (3-D) printing technology, combined with fillers and bioactive molecules, 3-D scaffolds for bone repair of sizable defects can be manufactured with a level of design customization that other methods lack. Hydroxyapatite (HA)/Beta-Tri-Calcium Phosphate (β -TCP) scaffold components may be created that provide mechanical strength, guide osseo- conduction and integration, and remodel over time. Additionally, research suggests that bone morphogenic protein (BMP) stimulates growth and differentiation of new bone. Therefore, we hypothesise that with the addition of BMP, HA- β -TCP scaffolds will show improved regeneration of bone over critical sized bone defects in an in vivo model. Patients & Methods. Scaffolds were implanted in six New Zealand White rabbits with a 10mm radial defect for 2 and 8 weeks. The scaffolds, made from 15% HA: 85% β-TCP, were designed using ROBOCAD design software and fabricated using a 3-D printing Robocast machine. Scaffolds were sintered at 1100°C for 4 hours with a final composition of 5% HA: ∼95% β-TCP. Micro-CT, histological analysis, and nanoindentation were conducted to determine the degree of new bone formation and remodeling. Results. Reconstructed microCT images show increased bone formation, remodeling, and integration in HA/ β -TCP-BMP scaffolds compared to virgin HA/ β -TCP scaffolds. Histological analysis showed increased bone formation but decreased osteoconduction in HA/ β -TCP-BMP scaffolds. Nanoindentation showed no effect of BMP on hardness nor elastic modulus of bone formed on the scaffolds. Discussion/Conclusions. HA/ β -TCP scaffolds with/without BMP are highly biocompatible and can successfully augment and accelerate the regeneration and remodeling of bone in critically sized long bone defects in a rabbit model. However, the data in this study show both improvement and detriment with the addition of BMP. Therefore, further studies must be performed. Ideally, eventual translation of this research to humans would eliminate the need for allograft and/or autograft in large bony defects and allow for a customizable 3D scaffold material relative to patient needs


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 114 - 114
1 Nov 2021
Başal Ö Ozmen O Deliormanli AM
Full Access

Introduction and Objective

Bone is a tissue which continually regenerates and also having the ability to heal after injuries however, healing of large defects requires intensive surgical treatment. Bioactive glasses are unique materials that can be utilized in both bone and skin regeneration and repair. They are degradable in physiological fluids and have osteoconductive, osteoinductive and osteostimulative properties. Osteoinductive growth factors such as Bone Morphogenetic Proteins (BMP), Vascular Endothelial Growth Factor (VEGF), Epidermal Growth Factor (EGF), Transforming Growth Factor (TGF) are well known to stimulate new bone formation and regeneration. Unfortunately, the synthesis of these factors is not cost- effective and, the broad application of growth factors is limited by their poor stability in the scaffolds. Instead, it is wise to incorporate osteoinductive nanomaterials such as graphene nanoplatelets into the structures of synthetic scaffolds. In this study, borate-based 13-93B3 bioactive glass scaffolds were prepared by polymer foam replication method and they were coated with graphene-containing poly (ε-caprolactone) layer to support the bone repair and regeneration.

Materials and Methods

Effects of graphene concentration (1, 3, 5, 10 wt%) on the healing of rat segmental femur defects were investigated in vivo using male Sprague–Dawley rats. Fabricated porous bioactive glass scaffolds were coated by graphene- containing polycaprolactone solution using dip coating method. The prepared 0, 1, 3, 5 and 10 wt% graphene nanoparticle-containing PCL-coated composite scaffolds were designated as BG, 1G-P-BG, 3G-P-BG, 5G-P-BG and 10G-P-BG, for each group (n: 4) respectively. Histopathological and immunohistochemical (bone morphogenetic protein, BMP-2; smooth muscle actin, SMA and alkaline phosphatase, ALP) examinations were made after 4 and 8 weeks of implantation.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 72 - 72
1 Apr 2017
Karakasli A Skiak E Satoglu İ Demirkiran N Ertem F Havitcioglu H
Full Access

Background

Bothlimited-contact dynamic compression plate (LC-DCP) and locking compression plate (LCP) systems were designed to provide enhanced bone healing and to improve stability at fracture site. However, implant failure, delayed union, nonunion and instability are still frequently encountered complications. The purpose of this study was to determine the biomechanical characteristics of a novel persistent compression dynamic plate (PCDP) which provides a persistent compression to fracture edges, and to compare the biomechanical properties of such a novel plate with the commonly used LCP.

Methods

The novel persistent compression dynamic plate (PCDP) system is composed of a body, an inner compression spring and a distal mobile component. The body (proximal part) contains an adjustable screw and the distal part of the dynamic system can slide inside the body through a special tube. 12 (saw bone) artificial femoral bones were used. Transverse distal shaft fracture was created in all the saw bones at the same level, 6 femurs were fixed using the novel PCDP, whereas the other 6 femurs were fixed using the well-known LCP. All samples had undergone a nondestructive repetitive different forces (axial compression, bending and torsion), to evaluate the biomechanical differences between the two plating systems.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 83 - 83
2 Jan 2024
Halloum A Kold S Rölfing J Abood A Rahbek O
Full Access

The aim of this scoping review is to understand the extent and type of evidence in relation to the use of guided growth for correcting rotational deformities of long bones. Guided growth is routinely used to correct angular deformities in long bones in children. It has also been proven to be a viable method to correct rotational deformities, but the concept is not yet fully examined. Databases searched include Medline, Embase, Cochrane Library, Web of Science and Google Scholar. All identified citations were uploaded into Rayyan.ai and screened by at least two reviewers. The search resulted in 3569 hits. 14 studies were included: 1 review, 3 clinical trials and 10 pre-clinical trials. Clinical trials: a total of 21 children (32 femurs and 5 tibiae) were included. Surgical methods were 2 canulated screws connected by cable, PediPlates obliquely oriented, and separated Hinge Plates connected by FiberTape. Rotation was achieved in all but 1 child. Adverse effects reported include limb length discrepancy (LLD), knee stiffness and rebound of rotation after removal of tethers. 2 pre-clinical studies were ex-vivo studies, 1 using 8-plates on Sawbones and 1 using a novel z-shaped plates on human cadaver femurs. There were 5 lapine studies (2 using femoral plates, 2 using tibial plates and 1 using an external device on tibia), 1 ovine (external device on tibia), 1 bovine (screws and cable on metacarp) and a case-report on a dog that had an external device spanning from femur to tibia. Rotation was achieved in all studies. Adverse effects reported include implant extrusions, LLD, articular deformities, joint stiffness and rebound. All included studies conclude that guided growth is a viable treatment for rotational deformities of long bones, but there is great variation in models and surgical methods used, and in reported adverse effects


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 77 - 77
2 Jan 2024
Gueorguiev B Varga P
Full Access

Intramedullary nails (IMNs) are the current gold standard for treatment of long bone diaphyseal and selected metaphyseal fractures. Their design has undergone many revisions to improve fixation techniques, conform to the bone shape with appropriate anatomic fit, reduce operative time and radiation exposure, and extend the indication of the same implant for treatment of different fracture types with minimal soft tissue irritation. The IMNs are made or either titanium alloy or stainless steel and work as load-sharing internal splints along the long bone, usually accommodating locking elements – screws and blades, often featuring angular stability and offering different configurations for multiplanar fixation – to secure secondary fracture healing with callus formation in a relative-stability environment. Bone cement augmentation of the locking elements can modulate the construct stiffness, increase the surface area at the bone-implant interface, and prevent cut-through of the locking elements. The functional requirements of IMNs are related to maintaining fracture reduction in terms of length, alignment and rotation to enhance fracture healing. The load distribution during patient's activities is along the entire bone-nail interface, with nail length and anatomic fit being important factors to avoid stress risers


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 58 - 58
2 Jan 2024
Camarero-Espinosa S
Full Access

The anterior cruciate ligament (ACL) is the connective tissue located at the end of long bones providing stability to the knee joint. After tear or rupture clinical reconstruction of the tissue remains a challenge due to the particular mechanical properties required for proper functioning of the tissue. The outstanding mechanical properties of the ACL are characterized by a viscoelastic behavior responsible of the dissipation of the loads that are transmitted to the bone. These mechanical properties are the result of a very specialized graded extracellular matrix that transitions smoothly between the heterotypic cells, stiffness and composition of the ACL and the adjacent bone. Thus, mimicking the zonal biochemical composition, cellular phenotype and organization are key to reset the proper functioning of the ACL. We have previously shown how the biochemical composition presented to cells in electrospun scaffolds results in haptokinesis, reverting contact-guidance effects. [1]. Here, we demonstrate that contact guidance can also be disrupted by structural parameters in aligned wavy scaffolds. The presentation of a wavy fiber arrangement affected the cell organization and the deposition of a specific ECM characteristic of fibrocartilage. Cells cultured in wavy scaffolds grew in aggregates, deposited an abundant ECM rich in fibronectin and collagen II, and expressed higher amounts of collagen II, X and tenomodulin as compared to aligned scaffolds. In-vivo implantation in rabbits of triphasic scaffolds accounting for aligned-wavy-aligned zones showed a high cellular infiltration and the formation of an oriented ECM, as compared to traditional aligned scaffolds. [2]


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 17 - 17
2 Jan 2024
Ramos-Díez S Camarero-Espinosa S
Full Access

Articular cartilage is a multi-zonal tissue that coats the epiphysis of long bones and avoids its wear during motion. An unusual friction could micro-fracture this connective membrane and progress into an osteochondral defect (OD), where the affected cartilage suffers inflammation, fibrillation, and forfeiture of its anisotropic structure. Clinical treatment for ODs has been focused on micro-fracture techniques, where the defect area is removed and small incisions are performed in the subchondral bone, which allows the exudation of mesenchymal stem cells (hMSCs) to the abraded zone. However, hMSCs represent less than 0.01% of the total cell population and are not able to self-organise coherently, so the treatments fail in the long term. To select, support and steer hMSCs from the bone marrow into a specific differentiation stage, and recreate the cartilage anisotropic microenvironment, multilayer dual-porosity 3D-printed scaffolds were developed. Dual-porosity scaffolds were printed using prepared inks, containing specific ratios of poly-(d,l)lactide-co-caprolactone copolymer and gelatine microspheres of different diameters, which acted as sacrificial micro-pore templates and were leached after printing. The cell adhesion capability was investigated showing an increased cell number in dual-porosity scaffolds as compared to non-porous ones. To mimic the stiffness of the three cartilage zones, several patterns were designed, printed, and checked by dynamic-mechanical analysis under compression at 37 ºC. Three patterns with specific formulations were chosen as candidates to recreate the mechanical properties of the cartilage layers. Differentiation studies in the selected scaffolds showed the formation of mature cartilage by gene expression, protein deposition and biomolecular analysis. Given the obtained results, designed scaffolds were able to guide hMSC behaviour. In conclusion, biocompatible, multilayer and dual-porosity scaffolds with cell entrapment capability were manufactured. These anisotropic scaffolds were able to recreate the physical microenvironment of the natural cartilage, which in turn stimulated cell differentiation and the formation of mature cartilage. Acknowledgments: This work was supported by the EMAKIKER grant


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 42 - 42
2 Jan 2024
Oliveira V
Full Access

Primary bone tumors are rare, complex and highly heterogeneous. Its diagnostic and treatment are a challenge for the multidisciplinary team. Developments on tumor biomarkers, immunohistochemistry, histology, molecular, bioinformatics, and genetics are fundamental for an early diagnosis and identification of prognostic factors. The personalized medicine allows an effective patient tailored treatment. The bone biopsy is essential for diagnosis. Treatment may include systemic therapy and local therapy. Frequently, a limb salvage surgery includes wide resection and reconstruction with endoprosthesis, biological or composites. The risk for local recurrence and distant metastases depends on the primary tumor and treatment response. Cancer patients are living longer and bone metastases are increasing. Bone is the third most frequently location for distant lesions. Bone metastases are associated to pain, pathological fractures, functional impairment, and neurological deficits. It impacts survival and patient quality of life. The treatment of metastatic disease is a challenge due to its complexity and heterogeneity, vascularization, reduced size and limited access. It requires a multidisciplinary treatment and depending on different factors it is palliative or curative-like treatment. For multiple bone metastases it is important to relief pain and increases function in order to provide the best quality of life and expect to prolong survival. Advances in nanotechnology, bioinformatics, and genomics, will increase biomarkers for early detection, prognosis, and targeted treatment effectiveness. We are taking the leap forward in precision medicine and personalized care


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 5 - 5
1 Apr 2018
Timmen M Stoermann S Saferding V Blüml S Stange R
Full Access

MicroRNA´s are regulatory sequences which influence the posttranscriptional synthesis of about 70% of protein encoding genes. In different studies, MicroRNA-146a (miR-146a) was associated with inflammatory and autoimmunological processes. In vitro it was shown, that miR-146a influences the bone metabolism by regulating differentiation of mesenchymal stem cells. The miR-146a deficient mouse starts to develop lymphoproliferative and myeloproliferative disease by 6–8 months of age. In this study, we investigate the influence of miR-146a deficiency on bone structure and stability dependent on age and gender. Material and Methods. Male and female mice of wild type (WT) and miR-146a deficient (KO) animals at the age of 2–3 and 5–7 month were analyzed Femur, Tibia and lumbar vertebra (LWK4) were dissected and used für structural analyses by microcomputer tomography (µCT). Parameters like bone volume/tissue volume, trabecular bone volume, trabecular thickness, number and separation as well as cortical thickness were determined. Biomechanical stability as load to failure testing was determined using torsional testing for the long bones and axial compression testing for the vertebra body. Statistical analysis was performed using Graph Pad Prism (Mann-Whitney-U-Test, significance: p<0.05). Results. Structural analyses of the bone structure in the long bones (femur, tibia) revealed a significant higher bone volume/tissue volume (BV/TV) and trabecular bone mass in the elder (5–7 month) miR-146a deficient female mice compared to the male group or wild type animals of either age. In the diaphysis of the femur a BV/TV of 21% was determined for the elder miR-146a deficient females compared to 9% BV/TV in the age matching WT group. These changes were due to an increase in trabecular thickness and trabecular number in this area. In contrast to that, the cortical thickness of all bones analyzed was lowered in the miR-146a deficient animals (male and female) compared to wild type. Biomechanical stability of long bones as well as the vertebra body of the older, female KO group was significantly lower compared to wild type bones. Femurs showed a maximal torque of 20Nmm compared to 34Nmm in the wild type group. The vertebra of the KO mice showed a maximal force at failure of 22N compared to 40N in the wild type group. Male groups and younger females revealed values comparable to wild type animals. Conclusion. The deficiency of miR-146a leads to an increase of trabecular bone in the long bones of female 5–7 month old mice, but to lowered biomechanical bone stability. If this is due to alterations in differentiation or proliferation of mesenchymal stem cells remains unclear and will be analyzed further. Additionally, gender relation of our observations points to the influence of female specific regulatory mechanisms like the involvement of estrogen receptor related mechanisms


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 30 - 30
1 Jan 2017
Pazzaglia U Congiu T Sibilia V Pagani F Benetti A Zarattini G
Full Access

The study of the chondrocyte maturation cycle and endochondral ossification showed that the developing vascular supply has appeared to play a key role in determining the cortical or trabecular structure of the long bones. The chondrocyte maturation cycle and endochondral ossification were studied in human, foetal cartilage anlagen and in postnatal meta-epiphyses. The relationship between the lacunar area, the inter territorial fibril network variations and CaP nucleation in primary and secondary ossification centres were assessed using light microscopy and SEM morphometry. The anlage topographic, zonal classification derived from the anatomical nomenclature of the completely developed long bone (diaphysis, metaphyses and epiphyses) allowed to follow the development of long bones cartilage model. A significant increase in chondrocyte lacunar area (p<0.001) was documented from the anlage epiphyseal zone 4 and 3 to zone 2 (metaphysis) and zone 1 (diaphysis), with the highest variation from zone 2 to zone 1. An inverse reduction in the intercellular matrix area (p<0.001) and matrix interfibrillar empty space (p<0.001) was also documented. These findings are consistent with the osmotic passage of free cartilage water from the interfibrillar space into the swelling chondrocytes, raising ion concentrations up to the critical threshold for mineral precipitation in the matrix. The mineralised cartilage served as a scaffold for osteoblasts apposition both in primary and secondary ossification centres and in the metaphyseal growth plate cartilage, but at different periods of bone anlage development and with distinct patterns for each zone. They all shared a common initial pathway, but it progressed with different times, modes and organisation in diaphysis, metaphysis and epiphysis. In the ossification phase the developing vascular supply has appeared to play a key role in determining the cortical or trabecular structure of the long bones


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 109 - 109
1 Nov 2018
Sarem M Heizmann M Barbero A Martin I Shastri VP
Full Access

Bone formation proceeds through two distinct processes. One involves the deposition of bone by osteoblasts (intramembranous ossification) and another through the remodeling of an intermediate cartilaginous matrix formed by chondrogenic differentiation of mesenchymal stem/stromal cells (MSCs) aggregates – a process called endochondral ossification (EO). EO is responsible for formation of long bones during development and most prevalent during facture repair upon callus formation. In adult bone injuries MSCs from periosteum form bone via EO whereas MSCs from bone marrow are primarily differentiate to osteoblast in vivo. We hypothesized that the unique biophysical and biochemical properties of bone mineral phase has a role in programming MSCs. Using a biomimetic bone like apatite (BBHAp) as surrogate for bone mineral phase, we studied the chondrogenic differentiation of human marrow derived MSCs and observed that the BBHAp dictates MSCs fate and strictly dictates the pathway of bone formation in vivo. Through exhaustive dissection of the signaling pathways at play, a prominent role of PTH1R in modulating the effects imposed by the BBHAp has been unraveled. These fundamental insights gained in how bone microenvironment might alter fate of MSCs has important implications for bone repair and regeneration therapies


Introduction. 20 cases of bone defect have been treated by the induced membrane technique avoiding allograft, microsurgery and amputation. Material and Methods. 9 cases of long bone defect (humerus and 2 bones arm) and 11 cases of bone defct at the hand have been included in this multicentric prospective study (3 centers). 11 cases were traumatic, 7 cases were septic non union and 2 cases were tumor. At hand level's bone reached at least one phalanx, and for long bone the mean defect was 5cm (3–11). All cases were treated by the induced membrane technique which consists in stable fixation, flap if necessary and in filling the void created by the bone defect by a cement spacer (PMMA). This technique needs a second stage procedure at the 2. nd. month where the cement is removed and the void is filled by cancellous bone. The key point of this induced membrane technique is to respect the foreign body membane which appeared around the cement spacer and which create a biologic chamber after the second time. Bone union was evaluated prospectively in each case by an surgeon not involved in the treatment by Xray and CT scan. Failure was defined as a non union at 1 year, or an uncontrolled sepsis at 1 month. Results. 3 cases failed to achieve bone union, 2 at hand level and 1 for long bone. No septic complications occured and all septic cases werre stopped. In 14 cases bone union was achieved with a delay of 5 months (1, 5–12). 2 biopsies allowed to proove us that osteoid tissue was created by the technic. At hand level all fingers have included. At shoulder and elbow level, function reached 75% of motion than controlateral side. Discussion. Masquelet first reported 35 cases of large bone defect of tibia non union treated by the induced membrane technic which allow to fill bone defect with cancellous bone alone. The cement spacer allows to induce a foreign body membrane which constitute a biological chamber. Works on animal model reported by Pellissier and Viatteau showed the properties of the membrane: secretion of growths factors (VEGF, TGFbéta1, BMP2) and osteoinductive activitie of the cells. The induced membrane seem to play the role of a neo periosteum. Using this technic is possible in emergency or in septic condition where bone defect can not been solved by shortening. This technic avoids to use microsurgical technic and the limit is the quantity of avalaible cancellous bone


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 3 - 3
1 Apr 2018
Kovtun A Haffner-Luntzer M Fischer V Prystaz K Ignatius A Gatzka M
Full Access

Histone modifications critically contribute to the epigenetic orchestration of bone development - in part by modifying accessibility of genes to transcription factors. Based on the previous finding that histone H2A deubiquitinase 2A-DUB/Mysm1 interacts with the p53-axis in hematopoiesis and tissue development, we here analyzed the molecular and cellular mechanisms of Mysm1-p53 interplay in bone development. The bone phenotype of 4–5 week-old Mysm1-/- (MKO), Mysm1-/-p53-/- (DKO) and corresponding wildtype (WT) mice was determined using µCT and histology. Primary osteoblasts, mesenchymal stem cells (MSCs) and osteoclasts were isolated from long bones to assess cell proliferation, differentiation, apoptosis and activity. Statistics: one-way ANOVA, p<0.05. MKO mice displayed an osteopenic bone phenotype compared to WT (BV/TV: 5.7±2.9 vs. 12.5±4.2, TbN: 1.3±0.6 vs. 2.7±0.7 1/mm, respectively), and these effects were abolished in DKO mice (BV/TV: 17.8±2.6, TbN: 3.7±0.4 1/mm). MKO mice compared to WT also showed both in vitro and in vivo disturbed osteoclast formation (in vitro: 1.5±1.2 vs. 9.9±1.8 OcN/mm2, in vivo OcN/BPm: 1.4±1.0 vs. 3.0±0.7 cells/mm, respectively) accompanied by increased apoptosis and DNA damage; additional p53 knockout attenuated these effects (7.8±1.8 OcN/mm2 and OcN/BPm: 2.2±1.0 cells/mm). Primary osteoblasts from both MKO and DKO mice showed decreased expression of the transcription factor Runx2 and of the osteogenic markers. ChIP-Seq analysis revealed direct binding of Mysm1 to Runx2 promoter regions in osteoblasts, implying that Mysm1 here regulates osteogenic differentiation. In contrast, MKO-MSCs differentiation did not differ from WT, but DKO-MSCs displayed a significantly increased expression of Alpl, Bglap and Runx2. The different effects of Mysm1-/- in MSCs and osteoblasts presumably resulted from the lower expression level of Mysm1 in MSCs in comparison to mature osteoblasts. Thus, our data demonstrate that H2A deubiquitinase Mysm1 is essential for the epigenetic control of bone development via distinct mechanisms: 1) In osteoclasts, Mysm1 is involved in maturation of osteoclast progenitors and osteoclast survival. 2) In osteoblasts, Mysm1 directly controls Runx2 expression, thereby explaining osteopenic phenotype of MKO mice. 3) In MSCs, Mysm1 may play an inferior role due to low expression level. However, loss of p53 increases Runx2 expression during MSC differentiation, leading to normal bone formation in DKO mice


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 54 - 54
1 May 2017
Roberton A Walker R Perera S Shah Z Bankes M George M
Full Access

Background. A dedicated referral pathway for patients with bony metastases was introduced at Guy's and St Thomas’ Hospitals (GSTT) in 2009. The aim was to facilitate prompt, consultant-led decision-making and intervention for patients at risk of pathological fracture of long bones. Methods. We performed a clinical audit and service evaluation of the referral pathway through retrospective review of referrals over 3.5 years. Results. 75 patients referred from 7 different specialties, (34:41 male:female), mean age 64. 16 different types of primary cancer identified, the most common being breast (22/75). Location of metastasis was most commonly the femur (59/75). 24 patients underwent surgery, with femoral nail the most common procedure (13/24). Patients in the surgery group were younger, with higher Mirel's score, less visceral metastases and survived longer after surgery than patients treated non-operatively. Median referral-clinic time was 10 days and referral-surgery time was 14 days. Conclusions. Our data demonstrate the importance of this service and the growing demand. We have updated trust guidelines and improved our referral process through GSTT's Electronic Patient Record system. We have presented this data at local level to improve awareness and intend to reduce referral-clinical review time and have recently established a multidisciplinary meeting to improve patient outcome. Level of Evidence. 3


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 11 - 11
1 Jan 2017
Ciapetti G Granchi D Barrena EG Rojewski M Rosset P Layrolle P Donati D Spazzoli B Baldini N
Full Access

Delayed bone healing and nonunion are complications of long bone fractures, with prolonged pain and disability. Regenerative therapies employing mesenchymal stromal cells (MSC) and/or bone substitutes are increasingly applied to enhance bone consolidation. The REBORNE project entailed a multi-center orthopaedic clinical trial focused on the evaluation of efficacy of expanded autologous bone marrow (BM) derived MSC combined with a CaP-biomaterial, to enhance bone healing in patients with nonunion of diaphyseal fractures. To complement the clinical and radiological examination of patients, bone turnover markers (BTM) were assayed as potential predictors of bone healing or non-union. Peripheral blood was collected from patients at fixed time-endpoints, that is at 6,12 and 24 weeks post-surgery for implantation of expanded autologus MSC and bone-like particles. Bone-specific alkaline phosphatase (BAP), C-terminal-propeptide type I-procollagen (PICP), osteocalcin (OC), β-Cross-Laps Collagen (CTX), soluble receptor activator of NFkB (RANKL), osteoprotegerin (OPG) were measured by ELISA assays in blood samples of 22 patients at BM collection and at follow-up visits. A significant relationship with age was found only at 6 months, with an inverse correlation for CTX, RANKL and OC, and positive for OPG. BTM levels were not related to gender. As an effect of local regenerative process, some BTM showed significant changes in comparison to the baseline value. In particular, the time course of BAP, PICP and RANKL was different in patients with a successful healing in comparison to patients with a negative outcome. The BTM profile apparently indicated a remarkable bone formation activity 12 weeks after surgery. However, the paucity of failed patients in our case series did not allow to prove statistically the role of BTM as predictors of the final outcome. Blood markers related to bone cell function are useful to measure the efficacy of a expanded MSC-regenerative approach applied to long bone non-unions. Changes of the markers may provide a support to radiological assessment of bone healing


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 108 - 108
1 Jan 2017
Stevens J Welting T Witlox A van Rhijn L Staal H
Full Access

Dysplasia Epiphysealis Hemimelica (DEH) also known as Trevor's Disease is a rare developmental disorder resulting in cartilaginous overgrowth of the epiphysis of long bones. DEH is usually diagnosed in children between two and eight years old and it is three times more often diagnosed in boys. The most reported complaints are pain, limitation in range of motion, and deformity or swelling of the affected joint. Treatment of symptomatic lesions consists of surgical resection of the lesion, resulting in good long-term results. Based on histological evaluation, DEH is often described as an osteochondroma or an osteochondroma-like lesion, although there are clinical, radiological and genetic differences between DEH and osteochondromas. To investigate the hypothesis that DEH and osteochondromas are histologically identical, two cases of DEH and two cases of osteochondromas in patients with Hereditary Multiple Osteochondroma (HMO) are compared at histological level. Tissue samples from patients with a histopathologically confirmed diagnosis of DEH were compared with two age and gender matched patients diagnosed with HMO. After tissue sampling and processing, (immuno)histological stainings were performed for Collagen type II, Collagen type X, Sox-9 and Safranin-O. Histologically, clumping of chondrocytes in a fibrillar matrix, a thick disorganized cartilage cap and ossification centres with small amounts of unresorbed cartilage were observed in DEH. In contrast, chondrocyte organisation in cartilage of osteochondromas displays characteristics of the normal growth plate. In addition, differences in expression of collagen type II, collagen type X and Sox9 were observed. Collagen type II was expressed in the extracellular matrix surrounding proliferative and hypertrophic chondrocytes in osteochondromas, while weak expression was observed in the entire cartilage cap in DEH. Collagen type X was not expressed in DEH, while expressed in the pericellular matrix surrounding hypertrophic chondrocytes in osteochondromas. Staining for Sox9 was positive in the hypertrophic chondrocytes in osteochondromas, while expressed in the nuclei of all chondrocyte clusters in DEH. Both morphological and immunohistological differences were observed in histological sections of DEH and osteochondromas. These findings reject our hypothesis, and supports the earlier observed clinical, radiological and genetic differences and implies a different aetiology between DEH and osteochondroma formation in HMO


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 13 - 13
1 Jan 2017
Zarattini G Salvi A Pazzaglia U
Full Access

The development and introduction of the closed locked intramedullary nail into clinical practice has revolutionized the treatment of fractures of long bone. The most difficult and technically demanding part of the procedure is often the insertion of the distal interlocking screws. A lot of efforts have been made during the past years to make it easier. In according with Whatling and Nokes, we can divide the different approaches to this issue in four main groups:. Free-hand (FH) technique;. Mechanical targeting devices mounted on image intensifier;. Mechanical targeting devices mounted onto nail handle;. Computer-assisted techniques. In addition of these, recently it has been proposed a navigational system using electromagnetic field. The main disadvantages of the FH technique, are prolonged exposure to radiation and results depend mostly on the dexterity of the surgeons. FH technique is however the most popular technique. Our targeting device is included into the mounted on image intensifier group. It consists of 2 radio-opaque rods at right angle to each over: one of this is fixed on the c-arm, whereas, the other is a sliding rod with a sleeve for the drill bit, which is the targeting guide itself. In the realization of this device, we have been inspired by the modification of the FH technique suggested by Kelley et al. To identify the distal holes we used the method described by Medoff (perfect circle). Once that the distal hole is seen as a perfect circle, with the C-arm in later view, the targeting guide is roughly positioned onto this and the drilling and the screwing operations are performed without the need for image intensifier. We used the device in bone models and in 9 clinical cases. In spite of authors demonstrated that the electromagnetic targeting device significantly reduced radiation exposure during placement of distal interlocking screws and was equivalent in accuracy when compared with the FH technique, the latter is the most used technique. Indeed, although all the studies have reported that the radiation exposure to orthopedic surgeon has been below the maximum allowable doses in all cases, there is still the risk of cumulative lifetime radiation exposure. From this point of view, namely the reduction of cumulative lifetime radiation exposure, we think that, paradoxically, our device could be more effective than electromagnetic targeting device, because it can be used in all the orthopedic operations that required a targeting device