Advertisement for orthosearch.org.uk
Results 1 - 20 of 56
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 120 - 120
1 Sep 2012
Burke N Kennedy J Fitzpatrick D Mullett H
Full Access

Purpose. Locking plates are widely used in clinical practice for the surgical treatment of complex proximal humerus fractures, especially in osteoporotic bone. The aim of this study is to assess the biomechanical influence of the infero-medial locking screws on maintaining reduction of the fragments in a proximal humerus fracture. Materials & Methods. A standard 3-part proximal humerus fracture was created in fourth generation humerus saw bones. Each specimen was anatomically reduced and secured with a PHILOS locking plate. Eleven of the specimens had infero-medial locking screws inserted, and 11 specimens did not. Each humerus sawbone underwent cyclical loading at 532N, as previous studies showed this was the maximum force at the glenohumeral joint. The absolute inter-fragmentary motion was recorded using an infra-red motion analysis device. Each specimen was then loaded to failure. Results. The fixation of a 3-part proximal humerus fracture with the insertion of the infero-medial locking screws had significantly less inter-fragmentary motion at 250, 500, 750 and 1000 cycles, when compared to a similar fracture pattern without this strategically placed screw (P< 0.001). In both groups at each 250 cycle increment there was a significant increase in the overall fracture fragment movement (P< 0.01). The load to failure in the group with the infero-medial screws was also significantly more (P< 0.001). The median load of 1159N was required for construct failure compared to 1452N in the group without the inferomedial screws. Conclusion. This study supports the importance of anatomical reduction and adequate support of the medial column on maintaining fracture reduction of proximal humerus fractures. The key placement of the infero-medial locking screws is of significant importance in creating a solid construct for proximal humerus fracture healing. This may reduce implant complications such as screw perforations or the possible loss of reduction of fracture fragments


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 39 - 39
23 Feb 2023
Jo O Almond M Rupasinghe H Jo O Ackland D Ernstbrunner L Ek E
Full Access

Neer Type-IIB lateral clavicle fractures are inherently unstable fractures with associated disruption of the coracoclavicular (CC) ligaments. A novel plating technique using a superior lateral locking plate with antero-posterior (AP) locking screws, resulting in orthogonal fixation in the lateral fragment has been designed to enhance stability. The purpose of this study was to biomechanically compare three different clavicle plating constructs. 24 fresh-frozen cadaveric shoulders were randomised into three groups (n=8 specimens). Group 1: lateral locking plate only (Medartis Aptus Superior Lateral Plate); Group 2: lateral locking plate with CC stabilisation (Nr. 2 FiberWire); and Group 3: lateral locking plate with two AP locking screws stabilising the lateral fragment. Data was analysed for gap formation after cyclic loading, construct stiffness and ultimate load to failure, defined by a marked decrease in the load displacement curve. After 500 cycles, there was no statistically significant difference between the three groups in gap-formation (p = 0.179). Ultimate load to failure was significantly higher in Group 3 compared to Group 1 (286N vs. 167N; p = 0.022), but not to Group 2 (286N vs. 246N; p = 0.604). There were no statistically significant differences in stiffness (Group 1: 504N/mm; Group 2: 564N/mm; Group 3: 512N/mm; p = 0.712). Peri-implant fracture was the primary mode of failure for all three groups, with Group 3 demonstrating the lowest rate of peri-implant fractures (Group 1: 6/8; Group 2: 7/8, Group 3: 4/8; p = 0.243). The lateral locking plate with orthogonal AP locking screw fixation in the lateral fragment demonstrated the greatest ultimate failure load, followed by the lateral locking plate with CC stabilization. The use of orthogonal screw fixation in the distal fragment may negate against the need for CC stabilization in these types of fractures, thus minimizing surgical dissection around the coracoid and potential complications


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 144 - 144
1 Apr 2019
Prasad KSRK Kumar R Sharma A Karras K
Full Access

Background. Stress fractures at tracker after computer navigated total knee replacement are rare. Periprosthetic fracture after Minimally Invasive Plate Osteosynthesis (MIPO) of stress fracture through femoral tracker is unique in orthopaedic literature. We are reporting this unique presentation of periprosthetic fractures after MIPO for stress fracture involving femoral pin site track in computer assisted total knee arthroplasty, treated by reconstruction nail (PFNA). Methods. A 75-year old female, who had computer navigated right total knee replacement, was admitted 6 weeks later with increasing pain over distal thigh for 3 weeks without trauma. Prior to onset of pain, she achieved a range of movements of 0–105 degrees. Perioperative radiographs did not suggest obvious osteoporosis, pre-existent benign or malignant lesion, or fracture. Radiographs demonstrated transverse fracture of distal third of femur through pin site track. We fixed the fracture with 11-hole combihole locking plate by MIPO technique. Eight weeks later, she was readmitted with periprosthetic fracture through screw hole at the tip of MIPO Plate and treated by Reconstruction Nail (PFNA), removal of locking screws and refixation of intermediate segment with unicortical locking screws. Then she was protected with plaster cylinder for 4 weeks and hinged brace for 2 months. Results. Retrograde nail for navigation pin site stress fracture entails intraarticular approach with attendant risks including scatches to prosthesis and joint infection. So we opted to fix by MIPO technique. Periprosthetic fracture at the top of MIPO merits fixation with antegrade nail in conjunction with conversion of screws in the proximal part of the plate to unicortical locking screws. Overlap of at least 3cms offers biomechanical superiority. She made an uneventful recovery and was started on osteoporosis treatment, pending DEXA scan. Conclusion. Reconstruction Nail (PFNA), refixation of intermediate segment with unicortical locking screws constitutes a logical management option for the unique periprosthetic fracture after MIPO of stress fracture involving femoral pin site track in computer assisted total knee replacement


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 41 - 41
1 Feb 2020
Studders C Saliken D Shirzadi H Athwal G Giles J
Full Access

INTRODUCTION. Reverse shoulder arthroplasty (RSA) provides an effective alternative to anatomic shoulder replacements for individuals with cuff tear arthropathy, but certain osteoarthritic glenoid deformities make it challenging to achieve sufficient long term fixation. To compensate for bone loss, increase available bone stock, and lateralize the glenohumeral joint center of rotation, bony increased offset RSA (BIO-RSA) uses a cancellous autograft for baseplate augmentation that is harvested prior to humeral head resection. The motivations for this computational study are twofold: finite element (FE) studies of BIO-RSA are absent from the literature, and guidance in the literature on screw orientations that achieve optimal fixation varies. This study computationally evaluates how screw configuration affects BIO-RSA graft micromotion relative to the implant baseplate and glenoid. METHODS. A senior shoulder specialist (GSA) selected a scapula with a Walch Type B2 deformity from patient CT scans. DICOM images were converted to a 3D model, which underwent simulated BIO-RSA with three screw configurations: 2 divergent superior & inferior locking screws with 2 convergent anterior & posterior compression screws (SILS); 2 convergent anterior & posterior locking screws and 2 superior & inferior compression screws parallel to the baseplate central peg (APLS); and 2 divergent superior & inferior locking screws and 2 divergent anterior & posterior compression screws (AD). The scapula was assigned heterogeneous bone material properties based on the DICOM images’ Hounsfield unit (HU) values, and other components were assigned homogenous properties. Models were then imported into an FE program for analysis. Anterior-posterior and superior-inferior point loads and a lateral-medial distributed load simulated physiologic loading. Micromotion data between the RSA baseplate and bone graft as well as between the bone graft and glenoid were sub-divided into four quadrants. RESULTS. In all but 1 quadrant, APLS performed the worst with the graft having an average micromotion of 347.1µm & 355.9 µm relative to the glenoid and baseplate, respectively. The SILS configuration ranked second, having 211.2 µm & 274.4 µm relative to the glenoid and baseplate. AD performed best, allowing 247.4 µm & 225.4 µm of graft micromotion relative to the glenoid and baseplate. DISCUSSION. Both APLS and SILS techniques are described in the literature for BIO-RSA fixation; however, the data indicate that AD is superior in its ability to reduce graft micromotion, and thus some revision to common practices may be necessary. While these micromotion data are larger than data in the extant RSA literature, there are several factors that account for this. First, to properly model the difference between locking and compression screws, we simulated friction between the compression screw heads and baseplate rather than a tied constraint as done in other studies, resulting in larger micromotion. Second, the trabecular bone graft is at greater risk of deforming than metallic spacers used when studying micromotion with glenosphere lateralization, increasing graft deflection magnitude. Future work will investigate the effects of various BIO-RSA variables. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 58 - 58
10 Feb 2023
Ramage D Burgess A Powell A Tangrood Z
Full Access

Ankle fractures represent the third most common fragility fracture seen in elderly patients following hip and distal radius fractures. Non-operative management of these see complication rates as high as 70%. Open reduction and internal fixation (ORIF) has complication rates of up to 40%. With either option, patients tend to be managed with a non-weight bearing period of six weeks or longer. An alternative is the use of a tibiotalocalcaneal (TTC) nail. This provides a percutaneous treatment that enables the patient to mobilise immediately. This case-series explores the efficacy of this device in a broad population, including the highly comorbid and cognitively impaired. We reviewed patients treated with TTC nail for acute ankle fractures between 2019 and 2022. Baseline and surgical data were collected. Clinical records were reviewed to record any post-operative complication, and post-operative mobility status and domicile. 24 patients had their ankle fracture managed with TTC nailing. No intra-operative complications were noted. There were six (27%) post-operative complications; four patients had loosening of a distal locking screw, one significant wound infection necessitating exchange of nail, and one pressure area from an underlying displaced fracture fragment. All except three patients returned to their previous domicile. Just over two thirds of patients returned to their baseline level of mobility. This case-series is one of the largest and is also one of the first to include cognitively impaired patients. Our results are consistent with other case-series with a favourable complication rate when compared with ORIF in similar patient groups. The use of a TTC nail in the context of acute, geriatric ankle trauma is a simple and effective treatment modality. This series shows acceptable complication rates and the majority of patients are able to return to their baseline level of mobility and domicile


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_10 | Pages 30 - 30
1 Jun 2023
Tissingh E Goodier D Wright J Timms A Campbell M Crook G Calder P
Full Access

Introduction. The FitBone lengthening nail (Orthofix UK) is an intramedullary device licensed for the lengthening of long bones in adults in the UK. It contains a motor powered by electricity transmitted via an induction coil placed underneath the skin. It was developed in Germany two decades ago but uptake in the UK has only started more recently. The aim of this study was to review the first cohort of FitBone lengthening nails in a unit with significant experience of other lengthening nails (including PRECICE and Stryde). Materials & Methods. Demographic, clinical and radiological data was prospectively collected on all FitBone cases starting in February 2022. Accuracy of lengthening rate, patient satisfaction and implant issues were all considered. Complications and learning points were recorded and discussed by the multidisciplinary team involved in the patients care. Results. Eleven lengthening nails were inserted between February and November 2022 (6 right femurs, 5 left femurs). The average patient age was 31 (16–57) with 4 females and 7 males. The average lengthening achieved was 44mm (13– 70) over an average of 59 days (35 to 104). Significant technical issues were encountered in this cohort of patients including slow opening up at osteotomy site (3 requiring speeding up of programme), early consolidation (one requiring re-do osteotomy) and backing out of locking screws (3 out of 11 nails). There were also patient use concerns with difficulty using the motor and the inability to reverse the lengthening without an additional component to the motor. Conclusions. We present the first UK cohort of patients with femoral lengthening using the FitBone implant and device. We highlight the technical and patient issues encountered during this learning curve and propose solutions to avoid these pitfalls


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 107 - 107
23 Feb 2023
Lee W Kiang W Chen Y Yeoh C Teo W Tang Z
Full Access

The Femoral Neck System (FNS) was introduced as an alternative device for the fixation of neck of femur fractures (NOFFs). The purported advantages include superior angular and rotatory stability compared to multiple cancellous screws, via a minimally invasive instrumentation that is simpler than conventional fixed angle devices. There were limited clinical studies regarding the utility of this device. We aimed to study the outcomes of NOFFs fixed with the FNS. This was a single-institution, retrospective review of all undisplaced elderly (≥60 years old) undisplaced young, and displaced young NOFFs fixed with the FNS. Demographics, surgical parameters, radiographic parameters, and clinical outcomes including complications were reviewed. Thirty-six subjects with a median age of 75 [44,89] years old, had NOFF fixation using the FNS. Thirty-one (86.1%) had undisplaced fractures. There were 6 (16.7%), 26 (72.2%), and 4 (11.1%) subjects with Pauwels types 1, 2, and 3 respectively. Thirty-two (88.9%) had posterior tilt of <20º. The mean duration of surgery was 71±18 minutes. Excluding 4 patients whom required revision surgery, 2 patients whom demised, and 10 patients whom defaulted reviews, the mean follow-up duration was 55±13 weeks. Four complications were recorded, namely implant cut out at the femoral head at week 8, breaking of the locking screw at the run-off region at week 22, avascular necrosis at week 25, and a refracture following near fall, causing the fracture to fail in varus at week 7 postoperation. While reasonably fast to instrument, failures still occur and it is likely multifactorial. However, the rate of reoperation is lower than what has been reported for NOFFs fixed with the a fixed-angle device or 3 cancellous screws. In conclusion, the FNS is a reasonably safe instrument to use. Surgeons’ discretion is still needed in patient selection, keeping in mind the need for satisfactory radiological parameters


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_5 | Pages 35 - 35
1 Apr 2022
See CC Al-Naser S Fernandes J Nicolaou N Giles S
Full Access

Introduction. Metabolic bone disease encompasses disorders of bone mineralization, abnormal matrix formation or deposition and alteration in osteoblastic and osteoclastic activity. In the paediatric cohort, patients with metabolic bone disease present with pain, fractures and deformities. The aim was to evaluate the use of lateral entry rigid intramedullary nailing in lower limbs in children and adolescents. Materials and Methods. Retrospective review was performed for an 11-year period. Lower limb rigid intramedullary nailing was performed in 27 patients with a total of 63 segments (57 femora, 6 tibiae). Majority of patients had underlying diagnoses of osteogenesis imperfecta or fibrous dysplasia (including McCune Albright disease). Mean age at surgery was 14 years. Indications for surgery included acute fractures, prophylactic stabilisation, previous nonunion and malunion, deformity correction and lengthening via distraction osteogenesis. Results. All fractures healed. Correction of deformity was successfully achieved in all segments. Delayed union occurred in 4 segments in 1 patient and was successfully treated with nail dynamization. Other complications included prominence, cortical penetrance and loosening of locking screws. One patient who had lengthening performed had nonunion and was managed with exchange nailing and adjunctive measures. Conclusions. Rigid intramedullary nailing is very effective in stabilisation and deformity correction of long bones in adolescent patients with pathological bone disease. The technique has low complication rates. We recommend the use of this technique in paediatric units with experience in managing metabolic bone conditions


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 100 - 100
1 Apr 2017
Haidukewych G
Full Access

Peri-prosthetic fractures above a TKA are becoming increasingly more common, and typically occur at the junction of the anterior flange of the femoral component and the osteopenic metaphyseal distal femur. In the vast majority of cases the TKA is well fixed and has been functioning well prior to fracture. For loose components, revision is typically indicated. Typically a megaprosthesis is required. Well-fixed components, internal fixation is preferred. Fixation options include retrograde nailing or lateral plating. Nails are typically considered in arthroplasties that allow intercondylar access (“open box PS” or CR implants) and have sufficient length of the distal fragment to allow multiple locking screws to be used. This situation is rare, as most distal fragments are quite short. If a nail is chosen, use of a long nail is preferred, since it allows the additional fixation and alignment that diaphyseal fill affords. Short nails should be discouraged since they can “toggle” in the meta-diaphysis and do not engage the diaphysis to improve coronal alignment. Plates can be used with any implant type and any length of distal fragment. The challenge with either fixation strategy is obtaining stable fixation of the distal fragment while maintaining length, alignment, and rotation. Fixation opportunities in the distal fragment can be limited due to obstacles caused by femoral component lugs, boxes, stems, cement mantles, and areas of stress shielding or osteolysis. Modern lateral locked plates can be inserted in a biologically friendly submuscular extra-periosteal fashion. More recent developments with polyaxial locked screws (that allow angulation prior to end-point locking) may offer even more versatility when distal fragment fixation is challenging. The goal of fixation is to obtain as many long locked screws in the distal fragment as possible. High union rates have been reported with modern locked plating techniques, however, biplanar fluoroscopic vigilance is required to prevent malalignments, typically valgus, distraction, and distal fragment hyperextension


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_17 | Pages 67 - 67
1 Nov 2016
Haidukewych G
Full Access

Peri-prosthetic fractures above a total knee arthroplasty (TKA) are becoming increasingly more common, and typically occur at the junction of the anterior flange of the femoral component and the osteopenic metaphyseal distal femur. In the vast majority of cases the TKA is well-fixed and has been functioning well prior to fracture. For loose components, revision is typically indicated. Typically a megaprosthesis is required. For well-fixed components, internal fixation is preferred. Fixation options include retrograde nailing or lateral plating. Nails are typically considered in arthroplasties that allow intercondylar access (“open box PS” or CR implants) and have sufficient length of the distal fragment to allow multiple locking screws to be used. This situation is rare, as most distal fragments are quite short. If a nail is chosen, use of a long nail is preferred, since it allows the additional fixation and alignment that diaphyseal fill affords. Short nails should be discouraged since they can “toggle” in the meta-diaphysis and do not engage the diaphysis to improve coronal alignment. Plates can be used with any implant type and any length of distal fragment. The challenge with either fixation strategy is obtaining stable fixation of the distal fragment while maintaining length, alignment, and rotation. Fixation opportunities in the distal fragment can be limited due to obstacles caused by femoral component lugs, boxes, stems, cement mantles, and areas of stress shielding or osteolysis. Modern lateral locked plates can be inserted in a biologically friendly submuscular extra-periosteal fashion. More recent developments with polyaxial locked screws (that allow angulation prior to end-point locking) may offer even more versatility when distal fragment fixation is challenging. The goal of fixation is to obtain as many long locked screws in the distal fragment as possible. High union rates have been reported with modern locked plating techniques, however, biplanar fluoroscopic vigilance is required to prevent malalignments, typically valgus, distraction, and distal fragment hyperextension


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_1 | Pages 154 - 154
1 Jan 2013
Bugler K Hardie A Watson C Appleton P McQueen M Court-Brown C White T
Full Access

Techniques for fixation of the lateral malleolus have remained essentially unchanged since the 1960s, but are associated with complication rates of up to 30%. The fibular nail is an alternative method of fixation requiring a minimal incision and tissue dissection, and has the potential to reduce complications. We reviewed the results of 105 patients with unstable fractures of the ankle that were fixed between 2002 and 2010 using the Acumed fibular nail. The mean age of the patients was 64.8 years (22 to 95), and 80 (76%) had significant systemic medical comorbidities. Various different configurations of locking screw were assessed over the study period as experience was gained with the device. Nailing without the use of locking screws gave satisfactory stability in only 66% of cases (4 of 6). Initial locking screw constructs rendered between 91% (10 of 11) and 96% (23 of 24) of ankles stable. Overall, seven patients had loss of fixation of the fracture and there were five post-operative wound infections related to the distal fibula. This lead to the development of the current technique with a screw across the syndesmosis in addition to a distal locking screw. In 21 patients treated with this technique there have been no significant complications and only one superficial wound infection. Good fracture reduction was achieved in all of these patients. The mean physical component Short-Form 12, Olerud and Molander score, and AAOS Foot and Ankle outcome scores at a mean of six years post-injury were 46 (28 to 61), 65 (35 to 100) and 83 (52 to 99), respectively. There have been no cases of fibular nonunion. Nailing of the fibula using our current technique gives good radiological and functional outcomes with minimal complications, and should be considered in the management of patients with an unstable ankle fracture


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_16 | Pages 50 - 50
1 Oct 2014
Vetter S Mühlhäuser I Recum JV Grützner P Franke J
Full Access

Background. The distal part of the radius is the most common localisation of fractures of the human body. Dislocated intraarticular fractures of the distal radius (FDR) are frequently treated by open reduction and internal fixation with a volar locking plate (VLP) under fluoroscopic guidance. Typically the locking screws are placed subchondral near the joint line to achieve maximum stability of the osteosynthesis. To avoid intraarticular screw placement an intraoperative virtual implant planning system (VIPS) as an application for mobile C-arms was established. The aim of the study was the validation of the implemented VIPS comparing the intraoperative planning with the actual placement of the screws. The study was conducted as a single-centre randomised controlled trial in a primary care institution. The hypothesis of the study was that there is conformity between the virtual implant position and the real implant placement. Patients/Material and Methods. 30 patients with FDR type A3, C1 and C2 according to the AO-classification were randomised in two treatment groups and allocated either in the conventional or in the VIPS group in which the patients underwent an intraoperative planning before screw placement. The randomisation was performed on the basis of a computer-generated code. After fracture reduction an initial diaphyseal fixation of the plate was done. Then the matching of the three-dimensional virtual plate with the image of the real plate in the fluoroscopy shots in two planes was performed automatically. The implant placement was planned intraoperatively in terms of orientation, angulation and length of the screws. After the placement of four or five locking screws the implant position was verified with an intraoperative three-dimensional mobile C-arm scan. The locking screws near the joint line were examined and compared in relation to the actual and the planned inclination angle, the azimuth angle which is determined analogue to a compass rose and the screw-tip distance. The planned and actual parameters of the locking screws were then statistically analysed applying the Shapiro-Wilk - and the Students t-test. Results. 15 patients with FDR were treated in the VIPS arm. In the VIPS group six fractures type A3 one type C1 and eight type C2 were included. The control group showed a similar fracture distribution with six type A3 and nine type C2 fractures. The discrepancy between the actual and the planned screw-tip distance was 2,24 ± 0,97 mm and did not differ significantly (p>0,05). The angle of the planned and actual screw placement also did not vary significantly (p>0,05). The difference of the actual to the planned azimut angle accounted for 18,69°± 29,84. The planned and real inclination of the screws differed by 1,66° ± 4,46. Conclusion. The analysis shows that the screws were almost placed as planned. Differences between actual and planned placement of the screws were observed but were not statistically significant. Therefore the hypothesis of the study can be accepted. We assume, that the precise planning of the screw placement in FDR with VIPS can be transported into the surgical treatment


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 67 - 67
1 Dec 2016
Haidukewych G
Full Access

Peri-prosthetic fractures above a TKA are becoming increasingly more common, and typically occur at the junction of the anterior flange of the femoral component and the osteopenic metaphyseal distal femur. In the vast majority of cases the TKA is well fixed and has been functioning well prior to fracture. For loose components, revision is typically indicated. Often, distal femoral mega prostheses are required to deal with metaphyseal bone loss. Good results have been reported in small series, however, complications, including infection remain concerning, and these implants are incredibly expensive. Although performing a mega prosthesis in the setting of a well fixed TKA is not unreasonable due to immediate full weight bearing, in my opinion, prosthetic replacement should be limited to cases of failed ORIF (rare), or in cases where fixation is likely to fail (i.e., severe osteolysis distally). For the majority of fractures above well fixed components, internal fixation is preferred for the main reason that the overwhelming majority of these fractures will heal. Fixation options include retrograde nailing or lateral locked plating. Nails are typically considered in arthroplasties that allow intercondylar access (“open box PS” or CR implants) and have sufficient length of the distal fragment to allow multiple locking screws to be used. This situation is rare, as most distal fragments are quite short. If a nail is chosen, use of a long nail is preferred, since it allows the additional fixation and alignment that diaphyseal fill affords. Short nails should be discouraged since they can “toggle” in the meta-diaphysis and do not engage the diaphysis to improve coronal alignment. Plates can be used with any implant type and any length of distal fragment. The challenge with either fixation strategy is obtaining stable fixation of the distal fragment while maintaining length, alignment, and rotation. Fixation opportunities in the distal fragment can be limited due to obstacles caused by femoral component lugs, boxes, stems, cement mantles, and areas of stress shielding or osteolysis. Modern lateral locked plates can be inserted in a biologically friendly submuscular extra-periosteal fashion. More recent developments with polyaxial locked screws (that allow angulation prior to end-point locking) may offer even more versatility when distal fragment fixation is challenging. The goal of fixation is to obtain as many long locked screws in the distal fragment as possible. High union rates have been reported with modern locked plating techniques, however, biplanar fluoroscopic vigilance is required to prevent malalignments, typically valgus, distraction, and distal fragment hyperextension


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 66 - 66
1 May 2019
Haidukewych G
Full Access

Peri-prosthetic fractures above a TKA are becoming increasingly more common, and typically occur at the junction of the anterior flange of the femoral component and the osteopenic metaphyseal distal femur. In the vast majority of cases, the TKA is well fixed and has been functioning well prior to fracture. For fractures above well-fixed components, internal fixation is preferred. Fixation options include retrograde nailing or lateral plating. Nails are typically considered in arthroplasties that allow intercondylar access (“open box PS” or CR implants) and have sufficient length of the distal fragment to allow multiple locking screws to be used. This situation is rare, as most distal fragments are quite short. If a nail is chosen, use of a long nail is preferred, since it allows the additional fixation and alignment that diaphyseal fill affords. Short nails should be discouraged since they can “toggle” in the meta-diaphysis and do not engage the diaphysis to improve coronal alignment. Plates can be used with any implant type and any length of distal fragment. The challenge with either fixation strategy is obtaining stable fixation of the distal fragment while maintaining length, alignment, and rotation. Fixation opportunities in the distal fragment can be limited due to obstacles caused by femoral component lugs, boxes, stems, cement mantles, and areas of stress shielding or osteolysis. Modern lateral locked plates can be inserted in a biologically friendly submuscular extra-periosteal fashion. The goal of fixation is to obtain as many long locked screws in the distal fragment as possible. High union rates have been reported with modern locked plating and nailing techniques, however, biplanar fluoroscopic vigilance is required to prevent malalignments, typically valgus, distraction, and distal fragment hyperextension. For certain fractures, distal femoral replacement (DFR) is a wise choice. The author reserves DFR for situations where internal fixation is likely to fail (severe distal osteolysis, severe osteopenia) or for cases where it has already failed (nonunion). Obviously, if the implant is loose, revision is indicated, and typically the distal bone loss is so severe that a distal femoral replacement is indicated. The author prefers cemented constructs and routinely adds antibiotics to the cement mixture. Careful attention to posterior dissection of the distal fragment is recommended to avoid neurovascular injury. Cementing the femoral component in the proper amount of external rotation is important to allow central patellar tracking. The available literature demonstrates excellent functional results with these reconstructions, however, complications are not uncommon. Infection and extensor mechanism complications are the most frequent complications and are best avoided. In summary, ORIF remains the treatment of choice for these fractures, however, for cases where ORIF is likely to fail, or has failed, DFR remains a predictable salvage option


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_12 | Pages 55 - 55
1 Jul 2014
Haidukewych G
Full Access

Peri-prosthetic fractures above a TKA are becoming increasingly more common, and typically occur at the junction of the anterior flange of the femoral component and the osteopenic metaphyseal distal femur. In the vast majority of cases the TKA is well-fixed and has been functioning well prior to fracture. For loose components, revision is typically indicated. Often, distal femoral mega prostheses are required to deal with metaphyseal bone loss. Good results have been reported in small series, however, complications, including infection remain concerning, and these implants are incredibly expensive. Although performing a mega prosthesis in the setting of a well-fixed TKA is not unreasonable due to immediate full weight bearing, in my opinion, prosthetic replacement should be limited to cases of failed ORIF (rare), or in cases where fixation is likely to fail (i.e., severe osteolysis distally). For the majority of fractures above well-fixed components, internal fixation is preferred for the main reason that the overwhelming majority of these fractures will heal. Fixation options include retrograde nailing or lateral locked plating. Nails are typically considered in arthroplasties that allow intercondylar access (“open box PS” or CR implants) and have sufficient length of the distal fragment to allow multiple locking screws to be used. This situation is rare, as most distal fragments are quite short. If a nail is chosen, use of a long nail is preferred, since it allows the additional fixation and alignment that diaphyseal fill affords. Short nails should be discouraged since they can “toggle” in the meta-diaphysis and do not engage the diaphysis to improve coronal alignment. Plates can be used with any implant type and any length of distal fragment. The challenge with either fixation strategy is obtaining stable fixation of the distal fragment while maintaining length, alignment, and rotation. Fixation opportunities in the distal fragment can be limited due to obstacles caused by femoral component lugs, boxes, stems, cement mantles, and areas of stress shielding or osteolysis. Modern lateral locked plates can be inserted in a biologically friendly submuscular extra-periosteal fashion. More recent developments with polyaxial locked screws (that allow angulation prior to end-point locking) may offer even more versatility when distal fragment fixation is challenging. The goal of fixation is to obtain as many long locked screws in the distal fragment as possible. High union rates have been reported with modern locked plating techniques, however, biplanar fluoroscopic vigilance is required to prevent malalignments, typically valgus, distraction, and distal fragment hyperextension


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 220 - 220
1 May 2012
Kampshoff J Stoffel K Yates P Kuster M
Full Access

Periprosthetic femur fractures are severe complications after hip arthroplasty. There is a high re-operation rate due to malunion, refracture and stem loosening. Fixation is more rigid when screws are used for proximal fixation of the plate instead of cables. Screws penetrating the cement mantle may damage it and induce loosening of the prosthesis stem. Hypotheses. The usage of larger diameter drills can prevent cement damage during screw insertion. There is only little loss in pull-out resistance using larger drills. A metal rod (diameter: 13 mm) was cemented into a transparent plastic tube (diameter: 25 mm), leaving a homogeneous cement layer of 6mm. Drills of different diameters (4.3 mm, 4.3 mm + tapping, 4.5 mm, 4.8 mm) were used to implant uni- and bicortical locking screws (all 5mm outer and 4.4mm core diameter) into the cement layer. Locking head screws (LHS: Synthes, Switzerland), periprosthetic locking screws (PPLS: Synthes, Switzerland) and NCB mulitidirectional locking screws (NCB: Zimmer, USA) were used. The onset of cracks was visually monitored during drilling, tapping and screw implantation. Pull-out resistance was measured on each screw. No crack appeared after implantation of any unicortical screw. No cracks appeared after drilling for bicortical screws. Cracks appeared after tapping or inserting bicortical screws (62.5% of the cases). Increasing the drill diameter reduces the risk of cement mantle cracks (to 25%). Bicortical screws had the highest pull-out resistance (median 3015N compared to 1250N for unicortical screws). Screws with a flat tip, smaller flute or double thread showed higher pullout forces. Unicortical screws can be implanted without damaging the cement. Bicortical screws have higher pull out resistance but bear the risk of cement mantle damage. For insertion of bicortical screws a 4.5 mm drill should be considered instead the usual 4.3 mm one. New screws should be developed for unicortical fixation of periprosthetic fractures combining favorable design properties. Further studies should follow to investigate crack formation and loosening after cyclic loading


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_5 | Pages 8 - 8
1 Mar 2014
Barbur S Robinson P Kumar S Twohig E Sandhu H
Full Access

The PFNA is used routinely at the RUH for unstable peri-trochanteric and femoral fractures. Failure of operative treatment is associated with increased morbidity and financial burden. We analysed surgical and fracture factors, aiming to identify those associated with fixation failure. Retrospective analysis of 76 consecutive patients treated with a PFNA between 2009–2012 was performed. Patient demographics were assessed, along with fracture classification, adequacy of reduction, tip apex distance (TAD) and grade of surgeon. Failure was defined as metal work failure, non-union or need for repeat procedure. The mean age was 78.9 years (25.9–97.4). 21 were male and 49 female. There were 17 failures (24.3%) (7 required further surgery). 10 failures were per-trochanteric, 2 sub-trochanteric and 5 mid-shaft fractures. Complications included 4 broken and 6 backed-out distal locking screws, 2 blade cut-outs, 1 nail fracture and 4 non-unions. All per-trochanteric were adequately reduced with a TAD <25 mm. 11/17 had consultant supervision. A high rate of backed-out distal locking screws was identified. We found no concerns with adequacy of reduction, TAD or consultant supervision


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 182 - 182
1 Sep 2012
Khan L Wallace R Simpson A Robinson C
Full Access

Aims. The aim of this study was to compare biomechanical properties of pre-contoured plate fixation using different screw fixation modes in a mid-shaft clavicle fracture model. Methods. Fourth generation biomechanical clavicle sawbones with a mid-shaft osteotomy were plated in one of three modes: nonlocking bicortical, locking bicortical and locking unicortical mode. The specimens were then tested to failure in four-point bending and pull-off tests. Results. Failure due to fracture through the sawbone was more common in nonlocking bicortical mode while plate bending was more common in the locking bicortical group. The ultimate load at failure was significantly lower in the locking bicortical group compared to the nonlocking bicortical group, however there was no significant difference between the locking unicortical group and nonlocking bicortical group. In the pull-off tests 100% of nonlocking bicortical and locking bicortical plates failed by fracture of the sawbone. 100% of the locking unicortical plates failed by plate and screw pull-off from the sawbone. The load at failure was highest for the locking unicortical plate but this was not significantly different to the other groups. Conclusion. This study shows that specimens fixed with locking unicortical screw fixation withstood comparable or superior loads in four-point bending and pull-off test when compared to nonlocking bicortical and locking bicortical screw fixation. In addition both locking screws and unicortical screws appear to provide a protective effect against periprosthetic sawbone fracture. Locking unicortical screw fixation of pre-contoured plates may be a viable alternative in the fixation of mid-shaft clavicle fractures


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 109 - 109
1 May 2019
Berend K
Full Access

Although the introduction of ultraporous metals in the forms of acetabular components and augments has substantially improved the orthopaedic surgeon's ability to reconstruct severely compromised acetabuli, there remain some revision THAs that are beyond the scope of cups, augments, and cages. In situations involving catastrophic bone loss, allograft-prosthetic composites or custom acetabular components may be considered. Custom components offer the potential advantages of immediate, rigid fixation with a superior fit individualised to each patient. These custom triflange components require a preoperative CT scan with three-dimensional (3-D) reconstruction using rapid prototyping technology, which has evolved substantially during the past decade. The surgeon can fine-tune exact component positioning, determine location and length of screws, modify the fixation surface with, for example, the addition of hydroxyapatite, and dictate which screws will be locked to enhance fixation. The general indications for using custom triflange components include: (1) failed prior salvage reconstruction with cage or porous metal construct augments, (2) large contained defects with possible discontinuity, (3) known pelvic discontinuity, and (4) complex multiply surgically treated hips with insufficient bone stock to reconstruct using other means. We previously reported on our center's experience with 23 patients (24 hips) treated with custom triflange components with minimum 2-year follow-up. This method of reconstruction was used in a cohort of patients with Paprosky Type 3B acetabular defects, which represented 3% (30 of 955) of the acetabular revisions we performed during the study period of 2003 to 2012. At a mean follow-up of 4.8 years (range, 2.3 – 9 years) there were four subsequent surgical interventions: two failures secondary to sepsis, and one stem revision and one open reduction internal fixation for periprosthetic femoral fracture. There were two minor complications managed nonoperatively, but all of the components were noted to be well-fixed with no obvious migration or loosening observed on the most recent radiographs. Harris hip scores improved from a mean of 42 (SD ±16) before surgery to 65 (SD ±18) at latest follow-up (p < 0.001). More recently, we participated in a multi-center study of 95 patients treated with reconstruction using custom triflange components who had a mean follow-up of 3.5 years. Pelvic defects included Paprosky Type 2C, 3A, 3B and pelvic discontinuity. Concomitant femoral revision was performed in 21 hips. Implants used a mean of 12 screws with 3 locking screws. Twenty of 95 patients (21%) experienced at least one complication, including 6% dislocation, 6% infection, and 2% femoral-related issues. Implants were ultimately removed in 11% of hips. One hip was revised for possible component loosening. Survivorship with aseptic loosening as the endpoint was 99%. Custom acetabular triflange components represent yet another tool in the reconstructive surgeon's armamentarium. These devices can be helpful in situations of catastrophic bone loss, achieving reliable fixation. Clinical results are inferior to both primary THA and more routine revision THA. Patients and surgeons should be aware of the increased complications associated with these complex hip revisions


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 52 - 52
1 Apr 2019
Roche C Yegres J Stroud N VanDeven J Wright T Flurin PH Zuckerman J
Full Access

Introduction. Aseptic glenoid loosening is a common failure mode of reverse shoulder arthroplasty (rTSA). Achieving initial glenoid fixation can be a challenge for the orthopedic surgeon since rTSA is commonly used in elderly osteoporotic patients and is increasingly used in scapula with significant boney defects. Multiple rTSA baseplate designs are available in the marketplace, these prostheses offer between 2 and 6 screw options, with each screw hole accepting a locking and/or compression screw of varying lengths (between 15 to 50mm). Despite these multiple implant offerings, little guidance exists regarding the minimal screw length and/or minimum screw number necessary to achieve fixation. To this end, this study analyzes the effect of multiple screw lengths and multiple screw numbers on rTSA initial glenoid fixation when tested in a low density (15pcf) polyurethane bone substitute model. Methods. This rTSA glenoid loosening test was conducted according to ASTM F 2028–17; we quantified glenoid fixation of a 38mm reverse shoulder (Equinoxe, Exactech, Inc) in a 15 pcf low density polyurethane block (Pacific Research, Inc) before and after cyclic testing of 750N for 10k cycles. To evaluate the effect of both screw fixation and screw number, glenoid baseplates were constructed using 2 and 4, 4.5×18mm diameter poly-axial locking compression screws (both n = 5) and 2 and 4, 4.5×46mm diameter poly-axial locking compression screws (both n = 5). A two-tailed unpaired student's t-test (p < 0.05) compared prosthesis displacements to evaluate each screw length (18 vs 46mm) and each screw number (2 vs 4). Results. All glenoid baseplates remained well-fixed after cyclic loading in the low density bone substitute block, regardless of screw length or screw number. As described in Table 1, the average pre- and post-cyclic displacement for baseplates with 18mm long screws was significantly greater than that of baseplates with 46mm long screws in both the A/P and S/I directions, with exception of displacements for 4 screws S/I-pre cyclic and 2 screws A/P-post cyclic loading. As described in Table 2, the average pre- and post-cyclic displacement for all baseplates with 2 screws was significantly greater than that of all baseplates with 4 screws, regardless of screw length in the A/P and S/I directions. Discussion and Conclusions. These results of this study demonstrate that rTSA glenoid baseplate fixation is impacted by both the number of screws and by the length of screws, with longer screws and more screws associated with significantly better initial fixation. However, it should be noted that none of the tested devices catastrophically failed in this non-defect/low-density model, demonstrating that adequate fixation can be achieved with as little as 2×18mm screws for some baseplate types. Care should be made when extrapolating these results to that of other designs. This study is limited by its use of only one implant design and by its use of a polyurethane substrate without any defect; future work should evaluate the effect of screw length and screw number in with multiple different prostheses in different densities of bone with and without defects