Advertisement for orthosearch.org.uk
Results 1 - 20 of 213
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 6 - 6
2 Jan 2024
Liu W Feng M Xu P
Full Access

More and more evidences showed that cartilage harbored local progenitor cells that could differentiate toward osteoblast, chondrocyte, and adipocyte. However, our previous results showed that osteoarthritis derived chondroprogenitor cells (OA-CPC) exhibited strong osteogenic potential even in chondrogenic condition. How to promote their chondrogenic potential is the key for cartilage repair and regeneration in osteoarthritis. Recently, lipid availability was proved to determine skeletal progenitor fate. Therefore, we aim to determine whether lipid inhibition under 3D culture condition could enhance OA-CPC chondrogenesis. Moreover, glucose concentration was also evaluated for chondrogenic capacity. Although there are many researches showed that lower glucose promotes chondrogenesis, in our results, we found that OA-CPC in high concentration of glucose (4.5g/L) with lipid inhibitor (GW1100) showed strongest chondrogenic potential, which could form largest cell pellet with strong proteoglycan staining, COL II expression and no COL I expression. Besides, COL2A1 was increased and COL10A1 was decreased significantly by GW1100 under high glucose condition in 2D culture. Interestingly, although the expression level of MMP13 was not changed by GW1100 at RNA and protein level, less MMP13 protein secreted out of cell nuclear. In summary, we estimated that higher glucose and lower lipid supplies benefit OA-CPC chondrogenesis and cartilage repair


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 80 - 80
17 Apr 2023
Azizova L Morgan D Rowlands J Brousseau E Kulik T Palianytsia B Mansell J Birchall J Wilkinson T Sloan A Ayre W
Full Access

Preventing infections in joint replacements is a major ongoing challenge, with limited effective clinical technologies currently available for uncemented knee and hip prostheses. This research aims to develop a coating for titanium implants, consisting of a supported lipid bilayer (SLB) encapsulating an antimicrobial agent. The SLB will be robustly tethered to the titanium using self-assembled monolayers (SAMs) of octadecylphosphonic acid (ODPA). The chosen antimicrobial is Novobiocin, a coumarin-derived antibiotic known to be effective against resistant strains of Staphylococcus aureus. ODPA SAMs were deposited on TiO. 2. -coated quartz crystal microbalance (QCM) sensors using two environmentally friendly non-polar solvents (anisole and cyclopentyl methyl ether, CPME), two concentrations of ODPA (0.5mM and 1mM) and two processing temperatures (21°C and 60°C). QCM, water contact angle measurements, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and temperature-programmed desorption mass spectrometry (TPD-MS) were used to characterise the ODPA SAM. A SLB with encapsulated Novobiocin was subsequently developed on the surface of the ODPA SAM using fluorescent lipids and a solvent assisted method. The prototype implant surface was tested for antimicrobial activity against S. aureus. A well-ordered, uniform ODPA SAM was rapidly formed using 0.5 mM ODPA in CPME at 21°C during 10 min, as confirmed by high Sauerbrey mass (≍285-290 ng/cm. 2. ), high atomic percentage phosphorus (detected using XPS) and high water contact angles (117.6±2.5°). QCM measurements combined with fluorescence microscopy provided evidence of complete planar lipid bilayer formation on the titanium surface using a solvent assisted method. Incorporation of Novobiocin into the SLB resulted in reduced attachment and viability of S. aureus. Key parameters were established for the rapid, robust and uniform formation of an ODPA SAM on titanium (solvent, temperature and concentration). This allowed the successful formation of an antimicrobial SLB, which demonstrated potential for reducing attachment and viability of pathogens associated with joint replacement infections


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 93 - 93
1 Mar 2021
Haartmans M Cillero-Pastor B Emanuel K Eveque-Mourroux M Tuijthof G Heeren R Emans P
Full Access

Early detection of knee osteoarthritis (OA) is critical for possible preventive treatment, such as weight loss, physical activity and sports advice and restoring biomechanics, to postpone total knee arthroplasty (TKA). Specific biomarkers for prognosis and early diagnosis of OA are lacking. Therefore, in this study, we analyzed the lipid profiles of different tissue types within Hoffa's fat pad (HFP) of OA and cartilage defect (CD) patients, using matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging (MSI). The HFP has already been shown to play an important role in the inflammatory process in OA by prostaglandin release. Additionally, MALDI-MSI allows us to investigate on tissue lipid distribution at molecular level, which makes it a promising tool for the detection of disease specific biomarkers for OA development. Samples of HFP were obtained of patients undergoing surgical treatment for OA (n=3) (TKA) or CD (n=3) (cartilage repair). In all cases, tissue was obtained without patient harm. HFP samples were washed in phosphate buffered saline (PBS) and snap-frozen directly after surgical dissection to remove redundant blood contamination and to prevent as much tissue degradation as possible. Tissue sections were cut at 15 µm thickness in a cryostat (Leica Microsystems, Wetzlar) and deposited on indium tin oxide glass slides. Norharmane (Sigma-Aldrich) matrix was sublimed onto the tissue using the HTX Sublimator (HTX Technologies, Chapel Hill). µMALDI-MSI was performed using Synapt G2Si (Waters) at 50 µm resolution in positive ion mode. MS/MS fragmentation was performed for lipid identification. Data were processed with in-house Tricks for MATLAB and analyzed using principle component analysis (PCA) and verlan. OA and CD HFP specific lipid profiles were revealed by MALDI-MSI followed by PCA and DA. With these analyses we were able to distinguish different tissue types within HFP of different patient groups. Further discriminant analysis showed HFP intra-tissue heterogeneity with characteristic lipid profiles specific for connective and adipose tissues, but also for synovial tissue and blood vessels, revealing the high molecular complexity of this tissue. As expected, lipid signals were lower at the site of the connective tissue, compared to the adipose tissue. In particular, tri-acyl glycerol, di-acyl glycerol, sphingomyelin and phosphocholine species were differently abundant in the adipose tissue of HFP of OA compared to CD. To our knowledge, this is the first study comparing lipid profiles in HFP of OA patients with CD patients using MALDI-MSI. Our results show different lipid profiles between OA and CD patients, as well as intra-tissue heterogeneity within HFP, rendering MALDI-MSI as a useful technology for OA biomarker discovery. Future research will focus on expanding the number of subjects and the improvement of lipid detection signals


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 30 - 30
1 Dec 2020
Haartmans M Eveque-Mourroux M Eijkel G Emanuel K Tuijthof G van Rhijn L Heeren R Emans P Cillero-Pastor B
Full Access

The incidence of osteoarthritis (OA) is increasing in our younger population. OA development early in life is often related to cartilage damage, caused by (sport) injury or trauma. Detection of early knee OA is therefore crucial to target early treatment. However, early markers for OA prognosis or diagnosis are lacking. Hoffa's fat pad (HFP) is an emerging source for knee biomarkers, as it is easily accessible and shows important interaction with the homeostasis of the knee. In this study, we used Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) as a first approach. MALDI-MSI allows the study of tissue-specific molecular distributions. Therefore, we used MALDI-MSI to analyze the lipid profiles in the HFP of three patients with OA and three patients undergoing cartilage regenerative treatment. We demonstrate that the lipid profile of patients with OA is different from patients with cartilage defects. HFP of each patient were snap frozen directly after surgical resection and cryosectioned at 15 μm. Each slide was sublimed with Norharmane matrix and analyzed by MALDI-MSI in positive and negative ion modes at a lateral resolution of 50 μm on a RapifleX Tissue Typer. The difference between patient groups were analyzed using principle component analysis and linear discriminant analysis. Lipid identifications were obtained on an Orbitrap Elite™ Hybrid Ion Trap-Orbitrap Mass Spectrometer in data dependent acquisition mode and analyzed using Lipostar software. Linear discriminant analysis showed a specific lipid profile for each group (variance 33.94%). Score projections revealed a differential lipid spatial distribution of OA patients compared to cartilage defect patients. Among the lipids that differed significantly, for instance, the m/z 760.59 [M+H]. +. was associated to osteoarthritis and identified as glycerophospholipid (PC 34:1), a main component of biological membranes. Additionally, the samples were found to be intra-tissue heterogeneous, with molecular profiles found in adipose-, connective- and synovial tissue. These results suggest that lipid profiles in HFP could be useful for early OA detection. However, intra-tissue heterogeneity in HFP should be recognized when using HFP as a biomarker source


The Journal of Bone & Joint Surgery British Volume
Vol. 73-B, Issue 6 | Pages 911 - 915
1 Nov 1991
Maruno H Shimizu T Kawai K Hirohata K

We studied the effect of a lipid clearing agent (clinofibrate) on the osteocytes of rabbits treated with corticosteroids. Thirty-one rabbits were divided into four groups: (A) steroid-treated with a normal diet, (B) steroid-treated and one a diet with added clinofibrate, (C) non-steroid-treated, on a diet with clinofibrate; and (D) non-steroid-treated on a normal diet. All the steroid-treated animals demonstrated hyperlipidaemia and fatty degeneration of the liver. Lipid-containing osteocytes were seen in the femoral heads of these animals. However, those which received clinofibrate (group B) had less severe lipidaemia, and less severe degeneration of the liver. In them, only the osteocytes around the haversian canals exhibited lipid inclusions. Clinofibrate appears to modify lipid metabolism, diminishing the steroid induced accumulation of lipids within osteocytes. This effect may protect against steroid-mediated osteonecrosis


Bone & Joint Research
Vol. 12, Issue 9 | Pages 580 - 589
20 Sep 2023
Dai X Liu B Hou Q Dai Q Wang D Xie B Sun Y Wang B

Aims. The aim of this study was to investigate the global and local impact of fat on bone in obesity by using the diet-induced obese (DIO) mouse model. Methods. In this study, we generated a diet-induced mouse model of obesity to conduct lipidomic and 3D imaging assessments of bone marrow fat, and evaluated the correlated bone adaptation indices and bone mechanical properties. Results. Our results indicated that bone mass was reduced and bone mechanical properties were impaired in DIO mice. Lipidomic sequencing and bioinformatic analysis identified 373 differential lipids, 176 of which were upregulated and 197 downregulated. Functional enrichment analysis revealed a significant downregulation of the pathways: fat digestion and absorption (ko04975) and lipolysis regulation in adipocytes (ko04923) in DIO mice, leading to local fat accumulation. The use of 3D imaging confirmed the increase in fat accumulation within the bone marrow cavity of obese mice. Conclusion. Our study sheds light on the intricate interplay between fat and bone, and provides a non-toxic and non-invasive method for measuring marrow adipose tissue. Cite this article: Bone Joint Res 2023;12(9):580–589


The Journal of Bone & Joint Surgery British Volume
Vol. 77-B, Issue 5 | Pages 684 - 686
1 Sep 1995
Bunker T Esler C

We prospectively studied 50 patients with the diagnosis of primary frozen shoulder. The serum lipid levels were measured in 43 of these patients and compared with those in 43 age-matched and sex-matched control subjects. The fasting serum triglyceride and cholesterol levels were significantly elevated in the frozen-shoulder group (cholesterol p < 0.01; triglyceride p < 0.02)


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 131 - 131
1 Apr 2019
Peckenpaugh E Maag C Metcalfe A Langhorn J Heldreth M
Full Access

Introduction. Aseptic loosening of total knee replacements is a leading cause for revision. It is known that micromotion has an influence on the loosening of cemented implants though it is not yet well understood what the effect of repeated physiological loading has on the micromotion between implants and cement mantle. This study aims to investigate effect of physiological loading on the stability of tibial implants previously subjected to simulated intra-operative lipid/marrow infiltration. Methods. Three commercially available fixed bearing tibial implant designs were investigated in this study: ATTUNE. ®. , PFC SIGMA. ®. CoCr, ATTUNE. ®. S+. The implant designs were first prepared using a LMI implantation process. Following the method described by Maag et al tibial implants were cemented in a bone analog with 2 mL of bone marrow in the distal cavity and an additional reservoir of lipid adjacent to the posterior edge of the implant. The samples were subjected to intra- operative range of motion (ROM)/stability evaluation using an AMTI VIVO simulator, then a hyperextension activity until 15 minutes of cement cure time, and finally 3 additional ROM/stability evaluations were performed. Implant specific physiological loading was determined using telemetric tibial implant data from Orthoload and applying it to a validated FE lower limb model developed by the University of Denver. Two high demand activities were selected for the loading section of this study: step down (SD) and deep knee bend (DKB). Using the above model, 6 degree of freedom kinetics and kinematics for each activity was determined for each posterior stabilized implant design. Prior to loading, the 3-D motion between tibial implant and bone analog (micromotion) was measured using an ARAMIS Digital Image Correlation (DIC) system. Measurement was taken during the simulated DKB at 0.25Hz using an AMTI VIVO simulator while the DIC system captured images at a frame rate of 10Hz. The GOM software calculated the distance between reference point markers applied to the posterior implant and foam bone. A Matlab program calculated maximum micromotion within each DKB cycle and averaged that value across five cycles. The implant specific loading parameters were then applied to the three tibial implant designs. Using an AMTI VIVO simulator each sample was subjected to 50,000 DKB and 120,000 SD cycles at 0.8Hz in series; equating to approximately 2 years of physiological activity. Following loading, micromotion was measured using the same method as above. Results. Initial micomotion measurements during DKB activity for ATTUNE. ®. , PFC SIGMA. ®. CoCr, ATTUNE. ®. S+ were 155µm, 246µm, and 104µm, respectively, and following physiological loading were 159µm, 264µm, and 112µm, respectively. While there was statistical significance between the micromotion of implant designs (p<0.05), there was no significance between before and after loading. Conclusion. This study shows there is no significant change in micromotion after approximately 2 years of physiological loading. However, there is a significant difference in micromotion between implant designs


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 32 - 32
1 Feb 2020
Maag C Peckenpaugh E Metcalfe A Langhorn J Heldreth M
Full Access

Introduction. Aseptic loosening is one of the highest causes for revision in total knee arthroplasty (TKA). With growing interest in anatomically aligned (AA) TKA, it is important to understand if this surgical technique affects cemented tibial fixation any differently than mechanical alignment (MA). Previous studies have shown that lipid/marrow infiltration (LMI) during implantation may significantly reduce fixation of tibial implants to bone analogs [1]. This study aims to investigate the effect of surgical alignment on fixation failure load after physiological loading. Methods. Alignment specific physiological loading was determined using telemetric tibial implant data from Orthoload [2] and applying it to a validated finite element lower limb model developed by the University of Denver [3]. Two high demand activities were selected for the loading section of this study: step down (SD) and deep knee bend (DKB). Using the lower limb model, hip and ankle external boundary conditions were applied to the ATTUNE. ®. knee system for both MA and AA techniques. The 6 degree of freedom kinetics and kinematics for each activity were then extracted from the model for each alignment type. Mechanical alignment (MA) was considered to be neutral alignment (0° Hip Knee Ankle Angle (HKA), 0° Joint Line (JL)) and AA was chosen to be 3° varus HKA, 5° JL. It is important not to exceed the limits of safety when using AA as such it is noted that DePuy Synthes recommends staying within 3º varus HKA and 3º JL. The use of 5º JL was used in this study to account for surgical variation [Depuy-Synthes surgical technique DSUS/JRC/0617/2179]. Following a similar method described by Maag et al [1] ATTUNE tibial implants were cemented into a bone analog with 2 mL of bone marrow in the distal cavity and an additional reservoir of lipid adjacent to the posterior edge of the implant. Tibial implant constructs were then subjected to intra-operative ROM/stability evaluation, followed by a hyperextension activity until 15 minutes of cement curing time, and finally 3 additional ROM/stability evaluations were performed using an AMTI VIVO simulator. The alignment specific loading parameters were then applied to the tibial implants using an AMTI VIVO simulator. Each sample was subjected to 50,000 DKB cycles and 120,000 SD cycles at 0.8 Hz in series; approximating 2 years of physiological activity. After physiological loading the samples were tested for fixation failure load by axial pull off. Results. Following alignment specific physiological loading the average fixation pull-off load for MA was 3289 ± 400 N and for AA was 3378 ± 133 N (Figure 1). There was no statistically significant difference fixation failure load by axial pull-off between the two alignment types (p=0.740). Conclusion. This study indicated that anatomic alignment, as defined with the alignment limits of this study, does not adversely affect the fixation failure load of ATTUNE tibial implants. For any figures or tables, please contact the authors directly


Bone & Joint Open
Vol. 4, Issue 4 | Pages 250 - 261
7 Apr 2023
Sharma VJ Adegoke JA Afara IO Stok K Poon E Gordon CL Wood BR Raman J

Aims

Disorders of bone integrity carry a high global disease burden, frequently requiring intervention, but there is a paucity of methods capable of noninvasive real-time assessment. Here we show that miniaturized handheld near-infrared spectroscopy (NIRS) scans, operated via a smartphone, can assess structural human bone properties in under three seconds.

Methods

A hand-held NIR spectrometer was used to scan bone samples from 20 patients and predict: bone volume fraction (BV/TV); and trabecular (Tb) and cortical (Ct) thickness (Th), porosity (Po), and spacing (Sp).


Bone & Joint Research
Vol. 11, Issue 7 | Pages 453 - 464
20 Jul 2022
Wang H Shi Y He F Ye T Yu S Miao H Liu Q Zhang M

Aims. Abnormal lipid metabolism is involved in the development of osteoarthritis (OA). Growth differentiation factor 11 (GDF11) is crucial in inhibiting the differentiation of bone marrow mesenchymal stem cells into adipocytes. However, whether GDF11 participates in the abnormal adipogenesis of chondrocytes in OA cartilage is still unclear. Methods. Six-week-old female mice were subjected to unilateral anterior crossbite (UAC) to induce OA in the temporomandibular joint (TMJ). Histochemical staining, immunohistochemical staining (IHC), and quantitative real-time polymerase chain reaction (qRT-PCR) were performed. Primary condylar chondrocytes of rats were stimulated with fluid flow shear stress (FFSS) and collected for oil red staining, immunofluorescence staining, qRT-PCR, and immunoprecipitation analysis. Results. Abnormal adipogenesis, characterized by increased expression of CCAAT/enhancer-binding protein α (CEBPα), fatty acid binding protein 4 (FABP4), Perilipin1, Adiponectin (AdipoQ), and peroxisome proliferator-activated receptor γ (PPARγ), was enhanced in the degenerative cartilage of TMJ OA in UAC mice, accompanied by decreased expression of GDF11. After FFSS stimulation, there were fat droplets in the cytoplasm of cultured cells with increased expression of PPARγ, CEBPα, FABP4, Perilipin1, and AdipoQ and decreased expression of GDF11. Exogenous GDF11 inhibited increased lipid droplets and expression of AdipoQ, CEBPα, and FABP4 induced by FFSS stimulation. GDF11 did not affect the change in PPARγ expression under FFSS, but promoted its post-translational modification by small ubiquitin-related modifier (SUMOylation). Local injection of GDF11 alleviated TMJ OA-related cartilage degeneration and abnormal adipogenesis in UAC mice. Conclusion. Abnormal adipogenesis of chondrocytes and decreased GDF11 expression were observed in degenerative cartilage of TMJ OA. GDF11 supplementation effectively inhibits the adipogenesis of chondrocytes and thus alleviates TMJ condylar cartilage degeneration. GDF11 may inhibit the abnormal adipogenesis of chondrocytes by affecting the SUMOylation of PPARγ. Cite this article: Bone Joint Res 2022;11(7):453–464


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 53 - 53
17 Nov 2023
Wright K McDonald J Mennan C Perry J Peffers M Hulme C
Full Access

Abstract. Objectives. A promising therapy for early osteoarthritis (OA) is the transplantation of human umbilical cord-derived mesenchymal stromal cells (hUC-MSCs). The synovial fluid (SF) from a pre-clinical ovine model treated with hUC-MSCs has been profiled using proteomics and bioinformatics to elucidate potential mechanisms of therapeutic effect. Methods. Four weeks after a medial meniscus transection surgery, sheep were injected with 10. 7. hUC-MSCs in Phosphate Buffered Saline (PBS) or PBS only (n=7) and sacrificed at 12 weeks. SF was normalised for protein abundance (ProteoMiner. TM. ) and analysed using label-free quantitation proteomics. Bioinformatics analyses (Ingenuity Pathway Analysis (IPA) and STRING) were used to assess differentially regulated functions from the proteomic data. Human orthologues were identified for the ovine proteins using UniProt and DAVID resources and proteins that were ≥±1.3 fold differentially abundant between treatment groups, were included in the bioinformatics analyses. Results. hUC-MSC treated animals demonstrated significantly less joint space narrowing. Nineteen SF proteins were differentially abundant in treated cf. control sheep (FC±2.0; p<0.05). Biglycan (a small leucine-rich proteoglycan of the cartilage extracellular matrix) abundance was increased by 2.1 fold in treated compared to untreated sheep (p=0.024). IPA indicated that lipid synthesis (z-score=1.772; p=0.00267) and immune cell migration pathways (cell movement of mononuclear leukocytes: z-score=1.761; p=0.00259), amongst others, were likely to be activated in the treated sheep. Conversely, tissue damage (z-score=−2; p=0.00019), senescence (z-score=−1.981; p=0.00007) and necrosis (z-score=−1.728; p=0.00829) associated pathways as well as inflammation (z-score=−1.718; p=0.00057) and vascular permeability (z-score=−1.698; p=0.00002) were likely to be inhibited in treated cf. untreated sheep. Conclusions. hUC-MSC treatment prevented/delayed OA progression, demonstrated via a reduction in joint space narrowing. SF proteome bioinformatics revealed potential mechanisms of therapeutic action related to immunomodulation and the inhibition of multiple cell death, and tissue damage associated pathways. Further, a potential predicted upregulation in lipid synthesis in treated sheep represents a novel mechanism warranting further investigation. Additional work is required to validate these discovery phase proteomic findings in studies which specifically target and manipulate the proposed mechanisms highlighted. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Bone & Joint Research
Vol. 5, Issue 11 | Pages 560 - 568
1 Nov 2016
Peeters M Huang CL Vonk LA Lu ZF Bank RA Helder MN Doulabi BZ

Objectives. Studies which consider the molecular mechanisms of degeneration and regeneration of cartilaginous tissues are seriously hampered by problematic ribonucleic acid (RNA) isolations due to low cell density and the dense, proteoglycan-rich extracellular matrix of cartilage. Proteoglycans tend to co-purify with RNA, they can absorb the full spectrum of UV light and they are potent inhibitors of polymerase chain reaction (PCR). Therefore, the objective of the present study is to compare and optimise different homogenisation methods and RNA isolation kits for an array of cartilaginous tissues. Materials and Methods. Tissue samples such as the nucleus pulposus (NP), annulus fibrosus (AF), articular cartilage (AC) and meniscus, were collected from goats and homogenised by either the MagNA Lyser or Freezer Mill. RNA of duplicate samples was subsequently isolated by either TRIzol (benchmark), or the RNeasy Lipid Tissue, RNeasy Fibrous Tissue, or Aurum Total RNA Fatty and Fibrous Tissue kits. RNA yield, purity, and integrity were determined and gene expression levels of type II collagen and aggrecan were measured by real-time PCR. Results. No differences between the two homogenisation methods were found. RNA isolation using the RNeasy Fibrous and Lipid kits resulted in the purest RNA (A260/A280 ratio), whereas TRIzol isolations resulted in RNA that is not as pure, and show a larger difference in gene expression of duplicate samples compared with both RNeasy kits. The Aurum kit showed low reproducibility. Conclusion. For the extraction of high-quality RNA from cartilaginous structures, we suggest homogenisation of the samples by the MagNA Lyser. For AC, NP and AF we recommend the RNeasy Fibrous kit, whereas for the meniscus the RNeasy Lipid kit is advised. Cite this article: M. Peeters, C. L. Huang, L. A. Vonk, Z. F. Lu, R. A. Bank, M. N. Helder, B. Zandieh Doulabi. Optimisation of high-quality total ribonucleic acid isolation from cartilaginous tissues for real-time polymerase chain reaction analysis. Bone Joint Res 2016;5:560–568. DOI: 10.1302/2046-3758.511.BJR-2016-0033.R3


Bone & Joint Research
Vol. 12, Issue 10 | Pages 667 - 676
19 Oct 2023
Forteza-Genestra MA Antich-Rosselló M Ramis-Munar G Calvo J Gayà A Monjo M Ramis JM

Aims. Extracellular vesicles (EVs) are nanoparticles secreted by all cells, enriched in proteins, lipids, and nucleic acids related to cell-to-cell communication and vital components of cell-based therapies. Mesenchymal stromal cell (MSC)-derived EVs have been studied as an alternative for osteoarthritis (OA) treatment. However, their clinical translation is hindered by industrial and regulatory challenges. In contrast, platelet-derived EVs might reach clinics faster since platelet concentrates, such as platelet lysates (PL), are already used in therapeutics. Hence, we aimed to test the therapeutic potential of PL-derived extracellular vesicles (pEVs) as a new treatment for OA, which is a degenerative joint disease of articular cartilage and does not have any curative or regenerative treatment, by comparing its effects to those of human umbilical cord MSC-derived EVs (cEVs) on an ex vivo OA-induced model using human cartilage explants. Methods. pEVs and cEVs were isolated by size exclusion chromatography (SEC) and physically characterized by nanoparticle tracking analysis (NTA), protein content, and purity. OA conditions were induced in human cartilage explants (10 ng/ml oncostatin M and 2 ng/ml tumour necrosis factor alpha (TNFα)) and treated with 1 × 10. 9. particles of pEVs or cEVs for 14 days. Then, DNA, glycosaminoglycans (GAG), and collagen content were quantified, and a histological study was performed. EV uptake was monitored using PKH26 labelled EVs. Results. Significantly higher content of DNA and collagen was observed for the pEV-treated group compared to control and cEV groups. No differences were found in GAG quantification nor in EVs uptake within any treated group. Conclusion. In conclusion, pEVs showed better performance than cEVs in our in vitro OA model. Although further studies are needed, pEVs are shown as a potential alternative to cEVs for cell-free regenerative medicine. Cite this article: Bone Joint Res 2023;12(10):667–676


Bone & Joint Research
Vol. 11, Issue 5 | Pages 292 - 300
13 May 2022
He C Chen C Jiang X Li H Zhu L Wang P Xiao T

Osteoarthritis (OA) is a degenerative disease resulting from progressive joint destruction caused by many factors. Its pathogenesis is complex and has not been elucidated to date. Advanced glycation end products (AGEs) are a series of irreversible and stable macromolecular complexes formed by reducing sugar with protein, lipid, and nucleic acid through a non-enzymatic glycosylation reaction (Maillard reaction). They are an important indicator of the degree of ageing. Currently, it is considered that AGEs accumulation in vivo is a molecular basis of age-induced OA, and AGEs production and accumulation in vivo is one of the important reasons for the induction and acceleration of the pathological changes of OA. In recent years, it has been found that AGEs are involved in a variety of pathological processes of OA, including extracellular matrix degradation, chondrocyte apoptosis, and autophagy. Clearly, AGEs play an important role in regulating the expression of OA-related genes and maintaining the chondrocyte phenotype and the stability of the intra-articular environment. This article reviews the latest research results of AGEs in a variety of pathological processes of OA, to provide a new direction for the study of OA pathogenesis and a new target for prevention and treatment. Cite this article: Bone Joint Res 2022;11(5):292–300


Bone & Joint Research
Vol. 10, Issue 1 | Pages 85 - 95
27 Jan 2021
Akhbari P Jaggard MK Boulangé CL Vaghela U Graça G Bhattacharya R Lindon JC Williams HRT Gupte CM

Aims. The diagnosis of joint infections is an inexact science using combinations of blood inflammatory markers and microscopy, culture, and sensitivity of synovial fluid (SF). There is potential for small molecule metabolites in infected SF to act as infection markers that could improve accuracy and speed of detection. The objective of this study was to use nuclear magnetic resonance (NMR) spectroscopy to identify small molecule differences between infected and noninfected human SF. Methods. In all, 16 SF samples (eight infected native and prosthetic joints plus eight noninfected joints requiring arthroplasty for end-stage osteoarthritis) were collected from patients. NMR spectroscopy was used to analyze the metabolites present in each sample. Principal component analysis and univariate statistical analysis were undertaken to investigate metabolic differences between the two groups. Results. A total of 16 metabolites were found in significantly different concentrations between the groups. Three were in higher relative concentrations (lipids, cholesterol, and N-acetylated molecules) and 13 in lower relative concentrations in the infected group (citrate, glycine, glycosaminoglycans, creatinine, histidine, lysine, formate, glucose, proline, valine, dimethylsulfone, mannose, and glutamine). Conclusion. Metabolites found in significantly greater concentrations in the infected cohort are markers of inflammation and infection. They play a role in lipid metabolism and the inflammatory response. Those found in significantly reduced concentrations were involved in carbohydrate metabolism, nucleoside metabolism, the glutamate metabolic pathway, increased oxidative stress in the diseased state, and reduced articular cartilage breakdown. This is the first study to demonstrate differences in the metabolic profile of infected and noninfected human SF, using a noninfected matched cohort, and may represent putative biomarkers that form the basis of new diagnostic tests for infected SF. Cite this article: Bone Joint Res 2021;10(1):85–95


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 90 - 90
2 Jan 2024
Gimona M
Full Access

Nanovesicle-based therapy is increasingly being pursued as a safe, cell-free strategy to combat various immunological, musculoskeletal and neurodegenerative diseases. Small secreted extracellular vesicles (sEVs) obtained from multipotent mesenchymal stromal cells (MSCs) are of particular interest for therapeutic use since they convey anti-inflammatory, anti-scarring and neuroprotective activities to the recipient cells. Cell-derived vesicles (CDVs) produced by a proprietary extrusion process are surrounded by a lipid bilayer membrane with correct membrane topology, display biological activities similar to MSC-derived EVs and may find specific application for organ-targeted drug delivery systems. Translation of nanovesicle-based therapeutics into clinical application requires quantitative and reproducible analysis of bioactivity and stability, and the potential for GMP-compliant manufacturing. Manufacturing and regulatory considerations as well as preclinical models to support clinical translation will be discussed


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 112 - 112
4 Apr 2023
Sun Y Ding Y Wu H Wu C Li S
Full Access

Osteoarthritis (OA) is a common age-related degenerative joint disease, affecting 7% of the global population, more than 500 million people worldwide. Exosomes from mesenchymal stem cells (MSCs) showed promise for OA treatment, but the insufficient biological targeting weakens its efficacy and might bring side effects. Here, we report the chondrocyte-targeted exosomes synthesized via click chemistry as a novel treatment for OA. Exosomes are isolated from human umbilical cord-derived MSCs (hUC-MSCs) using multistep ultracentrifugation process, and identified by electron microscope and nanoparticle tracking analysis (NTA). Chondrocyte affinity peptide (CAP) is conjugated on the surface of exosomes using click chemistry. For tracking, nontagged exosomes and CAP-exosomes are labeled by Dil, a fluorescent dye that highlights the lipid membrane of exosomes. To verify the effects of CAP-exosomes, nontagged exosomes and CAP-exosomes are added into the culture medium of interleukin (IL)-1β-induced chondrocytes. Immunofluorescence are used to test the expression of matrix metalloproteinase (MMP)-13. CAP-exosomes, compared with nontagged exosomes, are more easily absorbed by chondrocytes. What's more, CAP-exosomes induced lower MMP-13 expression of chondrocytes when compared with nontagged exosomes (p<0.001). CAP-exosomes show chondrocyte-targeting and exert better protective effect than nontagged exosomes on chondrocyte extracellular matrix. Histological and in vivo validation are now being conducted


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 42 - 42
11 Apr 2023
Hanetseder D Hruschka V Redl H Presen D
Full Access

Mesenchymal stem cells (MSCs) have the potential to repair and regenerate damaged tissues in response to injury, such as fracture or other tissue injury. Bone marrow and adipose tissue are the major sources of MSCs. Previous studies suggested that the regenerative activity of stem cells can be enhanced by exposure to tissue microenvironments. The aim of our project was to investigate whether extracellular matrix (ECM) engineered from human induced pluripotent stem cells-derived mesenchymal-like progenitors (hiPSCs-MPs) can enhance the regenerative potential of human bone marrow mesenchymal stromal cells (hBMSCs). ECM was engineered from hiPSC-MPs. ECM structure and composition were characterized before and after decellularization using immunofluorescence and biochemical assays. hBMSCs were cultured on the engineered ECM, and differentiated into osteogenic, chondrogenic and adipogenic lineages. Growth and differentiation responses were compared to tissue culture plastic controls. Decellularization of ECM resulted in efficient cell elimination, as observed in our previous studies. Cultivation hBMSCs on the ECM in osteogenic medium significantly increased hBMSC growth, collagen deposition and alkaline phosphatase activity. Furthermore, expression of osteogenic genes and matrix mineralization were significantly higher compared to plastic controls. Chondrogenic micromass culture on the ECM significantly increased cell growth and expression of chondrogenic markers, including glycosaminoglycans and collagen type II. Adipogenic differentiation of hBMSCs on the ECM resulted in significantly increased hBMSC growth, but significantly reduced lipid vacuole deposition compared to plastic controls. Together, our studies suggest that BMSCs differentiation into osteogenic and chondrogenic lineages can be enhanced, whereas adipogenic activity is decreased by the culture on engineered ECM. Contribution of specific matrix components and underlying mechanisms need to be further elucidated. Our studies suggest that the three-lineage differentiation of aged BMSCs can be modulated by culture on hiPSC-engineered ECM. Further studies are aimed at scaling-up to three-dimensional ECM constructs for osteochondral tissue regeneration


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 92 - 92
2 Jan 2024
Fidan B Demirdis I Çiftçi E Aydinli H Kaplan O Çelebier M Boyacioglu Ö Korkusuz P Karanfil Y Korkusuz F
Full Access

Platelet Rich Plasma (PRP), either rich (L-PRP) or poor (P-PRP) of leukocytes, is frequently used as an anti-inflammatory and regenerative tool in osteoarthritis (OA). PRP contains proteins but not genes as it is derived from megakaryocytes. Proteomics but not metabolomics of PRP was recently studied. Metabolomics is a field of ‘omics’ research involved in comprehensive portrayal of the small molecules, metabolites, in the metabolome. These small molecules can be endogenous metabolites or exogenous compounds found in an organism (1). Our aim was to determine the difference between L-PRP and P-PRP. A cross-sectional clinical study was designed in six recreational male athletes between the ages of 18 and 35 years. 3 mL P-PRP and 3 mL -LPRP was prepared from 60 mL of venous blood after treating with 9 mL of sodium citrate and centrifugation at 2.700 rpm for 10 min. Half of the prepared PRP's were frozen at −20°C for a week. Fresh and frozen samples were analyzed at the Q-TOF LC/MS device after thawing to room temperature. Untargeted metabolomic results revealed that the metabolomic profile of the L-PRP and P-PRP were significantly different from each other. A total of 33.438 peaks were found. Statistically significant (p<0.05) peaks were uploaded to the MetaboAnalyst 5.0 platform. Exogenous out of 2.308 metabolites were eliminated and metabolites found significant for our study were subjected to pathway analysis. Steroid biosynthesis, sphingolipid metabolism and metabolism of lipid pathways were affected. In the L-PRP samples, Nicotinamide riboside (FC: 2.2), MHPG (FC: 3.0), estrone sulfate (FC: 7.5), thiamine diphosphate (FC: 2.0), leukotriene E4 (FC: 7.5), PC(18:1 (9Z)e/2:0) (FC: 9.8) and Ap4A (FC: 2.1) were higher compared to P-PRP. C24 sulfatide (FC: −11.8), 3-hexaprenyl-4,5-dihydroxybenzoic acid (FC: −2.8) metabolites were furthermore lower in P-PRP. Clinical outcomes of PRP application should consider these metabolic pathways in future studies (2)