Background. Long term success of any shoulder
Introduction. Accurate alignment of components in total knee arthroplasty (TKA) is a known factor that contributes to improvement of post-operative kinematics and survivorship of the prosthetic joint. Recently, CAOS has been introduced into TKA in effort to reduce positioning variability that may deviate from the mechanical axis. However, literature suggests that clinical outcomes following TKA with CAOS may not present a significant improvement from traditional methods of implantation. This would infer that achieving correct alignment, alone, might be insufficient for ensuring an optimal reconstruction of the joint. Therefore, this study seeks to evaluate the importance of soft-tissue balancing, through the quantification of joint kinetics collected with intraoperative sensors, with or without the combined use of CAOS. Methods. Seven centers have contributed 215 patients who have undergone primary TKA with the use of intraoperative sensors. Of the 7 surgeons contributing patients to this study, 3 utilize CAOS; 4 utilize manual techniques. Along with standard demographic and surgical data being collected as per the multicenter study protocol, soft-tissue release techniques and medial-lateral intercompartmental loads—as indicated by the intraoperative sensors—were also captured pre- and post-release. “Optimal” balance was defined as a medial-lateral load difference of ≤ 15 lbs. A chi-squared analysis was performed to determine if the percentage of soft-tissue release was significantly different between the two groups: patients with CAOS, and patients without CAOS. Results. Of the 215 patients (35% with CAOS, 65% without CAOS) who have received TKA, using intraoperative sensors to assess mediolateral balance, 92.6% underwent soft-tissue release. Stratifying this data by surgical technique: 89% of the patients with CAOS, and 94% of patients without CAOS, were released. A chi-squared analysis—with 3 degrees of freedom; and 99% confidence—was executed to determine if the 5% difference between the two groups was significant. The analysis showed that there was no significant difference between the two groups, thus we can conclude that soft-tissue release is as equally necessary in the CAOS TKA group, as it is in the traditional TKA group. Discussion. It is widely accepted that correct alignment of TKA components contributes to improved kinematic function of the affected joint. Recently, technology has been developed to digitally guide surgeons through bony cuts, thereby decreasing the incidence of deviation from the mechanical axis. However, alignment may not be the foremost contributing factor in ensuring an optimal joint state. In this evaluation, 92.6% of the cohort required some degree of releasing of ligamentous structures surrounding the knee joint, regardless of intraoperative technique used. A chi-squared analysis of the data supports the claim that soft-tissue release is used in nearly all cases, irrespective of the use of CAOS (p < 0.001). This suggests that soft-tissue release is necessary in nearly all cases, even after appropriate alignment has been digitally verified. The data strongly supports the idea that obtaining an optimally functioning joint is multifactorial, and that alignment may play a more minor role in achieving ideal
The Adams-Berger reconstruction is an effective technique for treating distal radioulnar joint (DRUJ) instability. Graft preparation techniques vary amongst surgeons with insufficient evidence to support one technique over another. Our study evaluated the biomechanical properties of four graft preparation techniques. Extensor tendons were harvested from fresh frozen porcine trotters obtained from a local butcher shop and prepared in one of three configurations (n=5 per group): tendon only; tendon prepared with non-locking, running suture (2-0 FiberLoop, Arthrex, Naples, FL) spaced at 6 mm intervals; and tendon prepared with suture spaced at 12 mm intervals. A fourth configuration of suture alone was also tested. Tendons were allocated in a manner to ensure comparable average diameters amongst groups. Biomechanical testing occurred using custom jigs simulating radial and ulnar tunnels attached to a Bose Electroforce 3510 mechanical testing machine (TA Instruments). After being woven through the jigs, all tendons were sutured end-to-end with 2-0 PROLENE suture (Ethicon). Tendons then underwent a staircase cyclic loading protocol (5-25 Newtons [N] at 1 hertz [Hz] for 1000 cycles, then 5-50 N at 1 Hz for 1000 cycles, then 5-75 N at 1 Hz for 1000 cycles) until graft failure; if samples did not fail during the protocol, they were then loaded to failure. Samples were visually inspected for mode of failure after the protocol. A one-way analysis of variance was used to compare average tendon diameter; post-hac Tuhey tests were used to compare elongation and elongation rate. Survival to cyclic loading was analyzed using Kaplan-Meier survival curves with log rank. Statistical significance was set at a = 0.05. The average tendon diameter of each group was not statistically different [4.17 mm (tendon only), 4.33 mm (FiberLoop spaced 6 mm), and 4.30 mm (FiberLoop spaced 12 mm)]. The average survival of tendon augmented with FiberLoop was significantly higher than tendon only, and all groups had significantly improved survival compared to suture only. There was no difference in survival between FiberLoop spaced 6 mm and 12 mm. Elongation was significantly lower with suture compared to tendon augmented with FiberLoop spaced 6 mm. Elongation rate was significantly lower with suture compared to all groups. Modes of failure included rupture of the tendon, suture, or both at the simulated bone and suture and/or tendon interface, and elongation of the entire construct without rupture. In this biomechanical study, augmentation of porcine tendons with FiberLoop suture spaced at either 6 or 12 mm for DRUJ reconstruction significantly increased survival to a staircase cyclic loading protocol, as suture material was significantly stiffer than any of the tendon graft configurations.
Advances in algorithms developed with sensor data from smart phones demonstrates the capacity to passively collect qualitative gait metrics. The purpose of this feasibility study was to assess the recovery of these metrics following
Introduction.
Challenging cases in shoulder surgery emphasizing
INTRODUCTION. Multiple sources have consistently reported oxidation indices less than 0.1 with Marathon® inserts implanted up to 10 years. Understanding effects of oxidation level on UHMWPE wear in vivo is of great value. The objective of this study is to characterize the wear performance of Marathon® acetabular inserts at various levels of artificially induced oxidation, quantified using Bulk Oxidation Index (BOI) as determined per ASTM F2102, and to ascertain if wear rate is affected by progressive polyethylene oxidation. METHODS. GUR 1050 UHMWPE acetabular inserts, re-melted and cross-linked at 5.0Mrad (Marathon®, DePuy Synthes
Surgical navigation in joint replacement has been developed for more than 10 years. After the initial enthusiastic period, it appears that few surgeons have included this technology into their routine practice. The reasons for this backflow are lack of evidence of any clinical superiority for navigation implanted prostheses, higher costs and longer operative time. However, navigation systems have evolved, and might still belong to the future of joint replacement. Although most studies did not observe clinically relevant differences between navigated and conventional joint replacement, some registry studies identified significant advantages in favor of navigation: less blood loss, less early revision, subtle but relevant functional improvement… If TKR may be more forgiving, there is a trend to use less invasive implants (UKR), which are technically more demanding and may benefit from navigation. Ligamentous balancing may be more accurate and more reproducible with the help of navigation, and in that way patient specific templates may benefit from navigation. New techniques (short stem hip implants, hip resurfacing) have a relevant learning curve which may be fastened with navigation support. Another key point may be the individual
Tunning fork lines (TFL) were drawn on ankle anterior-posterior radiographs to assess the talar shift in ankle fractures. A 3-D ankle
Introduction. Tibiofemoral constraint in patients with total knee replacements (TKR) is dependent on both implant geometry and the surrounding soft tissue structures. Choosing more highly constrained geometries can reduce the contribution of soft tissue necessary to maintain joint stability [1]. Often when knee revision surgeries are required, the soft tissue and bone are compromised leading to the use of more constrained implants to ensure knee stability [2]. The current study quantifies the differences in varus-valgus (VV) and internal-external (IE) constraint between two types of total knee revision systems: SIGMA® TC3© and ATTUNE® REVISION. Methods. Nine cadaveric knees (7 male, age 64.0 ± 9.8 years, BMI 26.28 ± 4.92) were implanted with both fixed-bearing SIGMA TC3 and ATTUNE REVISION knee systems. Five knees received the TC3 implant first, while the remaining 4 received the ATTUNE implant first. The knees were mounted in an inverted position, and a six degree-of-freedom force-torque sensor (JR3, Woodland, CA) was rigidly secured to the distal tibia (Fig. 1). A series of manual manipulations applying IE and VV torques was performed through the flexion range [3]. Each specimen was then revised to the alternate revision system, and the manual manipulations were repeated. Joint loads were calculated, and tibiofemoral kinematics were described according to the Grood-Suntay definition [4]. VV and IE kinematics were calculated as a function of flexion angle, VV torque, and IE torque as has been described previously [3]. The knees were analysed at ±6 Nm VV and ±4 Nm IE, and the kinematics were normalized to the zero load path. A paired t-test (p < .05) was employed to identify significant differences between the kinematics of the two knee systems at 10º flexion increments. Results. Less VV motion was observed in the ATTUNE REVISION system compared to the TC3 system reaching statistical significance in mid-flexion. (Fig. 2). No significant differences were observed in IE rotation between the two designs, except in full extension where the SIGMA TC3 provided increased constraint (Fig. 3). Discussion. The ATTUNE REVISION System provided increased VV constraint compared to the TC3 design. The ATTUNE tibial post was more conforming to the femoral box throughout flexion, which contributed to the increased constraint. However, this increase was not concurrent with a reduction in IE rotational freedom as has been common with more constrained revision systems [5]. ATTUNE REVISION provides additional VV stability while retaining knee IE freedom and, therefore, may enable more natural knee kinematics for patients with MCL deficiency in need of a revision TKR. Future work will focus on how the increased levels of VV constraint affect weight-bearing knee kinematics in the presence of ligament deficiency. Acknowledgements. This work was supported by DePuy Synthes
Introduction and Aims. Clinically many factors such as variations in surgical positioning, and patients' anatomy and biomechanics can affect the occurrence and severity of edge loading which may have detrimental effect on the wear and durability of the implant. Assessing wear of hundreds of combinations of conditions would be impractical, so a preclinical testing approach was followed where the occurrence and severity of edge loading can be determined using short biomechanical tests. Then, selected conditions can be chosen under which the wear can be determined. If a wear correlation with the magnitude of dynamic separation or the severity of edge loading can be shown, then an informed decision can be made based upon the biomechanical results to only select important variables under which the tribological performance of the implant can be assessed. The aim of this study was to determine the relationship between the wear of ceramic-on-ceramic bearings and the (1) magnitude of dynamic separation, (2) the maximum force reached during edge loading and (3) the severity of edge loading resulting from component translational mismatch between the head and cup centres. Methods. The Leeds II hip joint simulator with a standard walking cycle and 36mm diameter ceramic-on-ceramic bearings (BIOLOX. ®. delta, DePuy Synthes
To evaluate a innovate one stage procedure of the PJI knee treatment using computed assisted guidance. Our objectives; to increase the functional results by optimizing the anatomical
Introduction. Moderately crosslinked, thermally treated ultrahigh molecular weight polyethylene (UHMWPE) has to date demonstrated a good balance of wear resistance and mechanical properties. MARATHON™ Polyethylene (DePuySynthes
Objectives. An optimal reconstruction of the joint anatomy and physiology during revision total knee replacement (RTKR) is technically demanding. The standard navigation systems were developed for primary procedures, and their adaptation to RTKR is difficult. We present a new navigation software dedicated to RTKR. The rationale of this new software was to allow a virtual planning of the
Introduction. Edge loading of hip replacements may result in plastic deformation, creep and wear at the rim of the cup and potentially fatigue failure. Variations in component positioning can lead to dynamic separation and edge loading [1]. The aim of this study was firstly to investigate the effects of translational and rotational positioning on the dynamic separation and severity of edge loading, and secondly to determine the wear rates of metal-on-polyethylene bearings under the more severe separation and edge loading conditions. Materials and Methods. A hip joint simulator (ProSim EM13, Simulation Solutions, UK) was set up with 36mm diameter metal-on-polyethylene hip replacements (Marathon™, DePuy Synthes
Tunning fork lines (TFL) were drawn on ankle anterior-posterior radiograph to assess the talar shift. A 3-D ankle
Introduction Modern metal-on-metal hip resurfacing (RHA) was introduced as a bone-preserving method of
ORIF is the treatment of choice for the majority of acetabular fractures with the ultimate goal of native hip preservation. As long as anatomic reduction and joint congruency is achieved, the results of ORIF have led to good to excellent outcomes. Total hip arthroplasty (THA) after acetabular fracture is indicated: 1.) acutely in the setting of a fracture where ORIF has been shown to portray a poor prognosis (severe femoral head and/or posterior wall impaction, dome comminution (gull sign) or 2.) in the presence of the sequelae of acetabular fractures such as posttraumatic arthritis or osteonecrosis. Independent of the setting, THA after acetabular fracture presents unique challenges to the orthopaedic surgeon and in many instances requires a team approach that includes both
Patient-reported outcome measures have become an important part of routine care. The aim of this study was to determine if Patient-Reported Outcomes Measurement Information System (PROMIS) measures can be used to create patient subgroups for individuals seeking orthopaedic care. This was a cross-sectional study of patients from Duke University Department of Orthopaedic Surgery clinics (14 ambulatory and four hospital-based). There were two separate cohorts recruited by convenience sampling (i.e. patients were included in the analysis only if they completed PROMIS measures during a new patient visit). Cohort #1 (n = 12,141; December 2017 to December 2018,) included PROMIS short forms for eight domains (Physical Function, Pain Interference, Pain Intensity, Depression, Anxiety, Sleep Quality, Participation in Social Roles, and Fatigue) and Cohort #2 (n = 4,638; January 2019 to August 2019) included PROMIS Computer Adaptive Testing instruments for four domains (Physical Function, Pain Interference, Depression, and Sleep Quality). Cluster analysis (K-means method) empirically derived subgroups and subgroup differences in clinical and sociodemographic factors were identified with one-way analysis of variance.Aims
Methods
Background. The Kotz Modular Femoral Tibial Replacement system has been one of the most widely utilised uncemented modular systems for bone and