Advertisement for orthosearch.org.uk
Results 1 - 20 of 46
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 141 - 141
1 Jul 2020
Delisle J Benderdour M Benoit B Giroux M Laflamme GY Nguyen H Ranger P Shi Q Vallières F Fernandes J
Full Access

Total Knee Arthroplasty (TKA) patients may present with effusion, pain, stiffness and functional impairment. A positive metal hypersensitivity (positive LTT) may be an indication for a revision surgery with a custom-made implant devoid of any hypersensitivity-related metal or an implant with the least possible ion content of the metal hypersensitivity, if no custom-made is available. The purpose of the current study is to assess the prevalence of metal hypersensitivity in subjects requiring a primary TKA and assess their early functional outcomes. We are recruiting 660 subjects admitted for TKA. Subjects are randomly assigned to 2 groups: oxidized zirconium implant group or cobalt-chrome implant group. Functional outcomes and quality of life (QoL) are measured pre operatively, 3, 6 and 12 months post operatively with WHOQOL-BREF (domain1-Physical Health, domain 2- Psychological, domain 3- Social relationships, domain 4-Environment), KSS, KOOS and pain Visual Analog Scale (VAS). LTT and metal ions are evaluated pre operatively and 12 months post-surgery. One hundred-sixty patients, 98 women, were enrolled in the study. Mean age was 65.6±8.9. Mean follow up (FU) was 7.1±3.8 months. Eighty-one (50.6%) were randomised in the cobalt-chrome group. Infection rate was 1.9%, one patient required debridement. Three patients (1.9%) presented with contracture at three months FU. At 12 months, WHOQOL-BREF domain 1, 2 and 4 improved significantly (p0,05). Overall, all 160 patients improved their functional outcomes and QoL. At 12 months, VAS scores decreased from 7±2.06 at baseline to 1.95±2.79. Furthermore, the high prevalence of positive LTT (27/65) do not seem to affect early functional outcomes and QoL on patients that may have received a potential implant with hypersensitivity (18/27)


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 53 - 53
1 Dec 2016
Senay A Benderdour M Laflamme G Ranger P Shi Q Delisle J Fernandes J
Full Access

Total joint arthroplasty has proven to be efficient to relieve pain and regain mobility. In fact, most patients undergoing a total knee arthroplasty (TKA) are satisfied with their surgery (80 to 90%), yet 4 to 7% still complain of unexplainable pain and stiffness. Several authors have proposed that reactivity to the implant could explain this phenomenon. Still, no strong evidence supports this theory as of today. We aimed to determine the prevalence of metal and cement hypersensitivity in a cohort of patients with unexplained pain and stiffness after TKA. We retrieved data for a group of patients presenting unexplained pain and stiffness. We excluded all other potential known causes of pain. All patients were tested with a Lymphocyte Transformation Test from whole blood taps. We analysed data of hypersensitivity to metals (alloy particles of titanium and cobalt, aluminum, cobalt, nickel, zirconium, vanadium, molybdenum, cobalt, chromium and iron) and PMMA cement (bone cement monomer and particles). Fifty-three patients underwent a LTT for unexplained pain and stiffness after total knee arthroplasty between May 2012 and May 2015. The cohort consisted of 26 men and 27 women with a mean age of 66.3(±8.0) years. Six patients had no hypersensitivity (11.3%), leaving 88.7% of the cohort with hypersensitivity to metal and/or cement. Almost half the cohort of patients tested for PMMA was hypersensitive to cement (44.0%). The most common metal hypersensitivity was nickel (69.8%). Twelve patients presented sensitivity to only one metal (22.6%), whereas 35 patients were hypersensitive to more than one metal (66.0%). Eleven patients had revision surgery with a hypoallergenic prosthesis. Patients reported a significant diminution of pain as well as better knee function compared to preoperative status as early as 6 weeks postop, although some reported residual stiffness. The results of this study suggest that metal and/or cement hypersensitivity could play a role in cases of total knee arthroplasty with unexplained pain and stiffness. Randomised controlled clinical trials on the subject will be initiated by our team to further investigate this phenomenon


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 40 - 40
1 Apr 2018
Kanojia R
Full Access

The evolution of orthopedic implants has witnessed a great evolution and allowed insights into the various metals and alloys compatible with the human body. However, some recent reports have raised concerns regarding hypersensitivity to several metals used in orthopedic implants. These cases are mostly documented in the field of arthroplasty. Metal ion release following hip or knee arthroplasty is a known phenomenon and associated immune reactions to these metal ions have been implicated in the causation of these hypersensitivity reactions. These reactions frequently lead to poor outcome following these implant surgeries. We here present two rare cases of metal induced hypersensitivity reactions following orthopedic surgeries. We have also reviewed the literature in this context to look into the various causes of metal reactions, types of implant involved in hypersensitivity, methods of testing and management options in these cases


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 60 - 60
1 Jun 2018
MacDonald S
Full Access

Patients with painful metal-on-metal bearings presenting to the orthopaedic surgeon are a difficult diagnostic challenge. The surgeon must go back to basic principles, perform a complete history and physical exam, obtain serial radiographs and basic blood work (ESR, CRP) to rule out common causes of pain and determine if the pain is, or is not, related to the bearing. The Asymptomatic MoM Arthroplasty: Patients will present for either routine follow up, or because of concerns re: their bearing. It is important to emphasise that at this point the vast majority of patients with a MoM bearing are indeed asymptomatic and their bearings are performing well. The surgeon must take into account: a) which specific implant are they dealing with and what is its track record; b) what is the cup position; c) when to perform metal ion testing; d) when to perform further soft tissue imaging (MARS MRI, Ultrasound); e) when to discuss possible surgery. Painful MoM THA causes not related to the bearing couple: These can be broken down into two broad categories. Causes that are Extrinsic to the hip include: spine, vascular, metabolic and malignancy. Causes that are Intrinsic to the hip can either be Extracapsular (iliopsoas tendonitis and trochanteric bursitis) or Intracapsular (sepsis, loosening, thigh pain, prosthetic failure). Painful MoM THA causes related to the bearing couple: There are now described a number of possible clinical scenarios and causes of pain that relate to the metal-on-metal bearing couple itself: a) local hypersensitivity reaction without a significant soft tissue reaction; b) local hypersensitivity reaction with a significant soft tissue reaction; c) impingement and soft tissue pain secondary to large head effect. Metal ions: obtaining serum, or whole blood, cobalt and chromium levels is recommended as a baseline test. However, there is no established cutoff level to determine with certainty if a patient is having a hypersensitivity reaction. A 7 parts per billion cutoff has been suggested. This gives high specificity, but poor sensitivity. Metal ions therefore can be used as a clue, and one more test in the workup, but cannot be relied upon in isolation to make a diagnosis. MARS MRI: a useful tool for demonstrating soft tissue involvement, but there are many painless, well-functioning MoM implants that have soft tissue reactions, that don't require a revision. In the painful MoM hip an MRI, or ultrasound, is recommended to look for soft tissue destruction or a fluid-filled periprosthetic lesion (pseudotumor). Significant soft tissue involvement is concerning and is commonly an indication for revision in the painful MoM hip. Treatment: management of the painful MoM hip is directly related to the etiology of the pain. Unique to MoM bearing is the issue of pain secondary to a local hypersensitivity reaction. All above tests should be utilised to help determine the best course of action in any individual patient. The painful MoM bearing, that is demonstrating significant soft tissue involvement is a concerning scenario. Earlier revision, to prevent massive abductor damage, would seem prudent for these patients. The painful MoM bearing with no significant soft tissue changes can probably be followed and reviewed at regular intervals. If the pain persists and is felt to be secondary to a hypersensitivity reaction, then revision is really the only option, although the patient must be cautioned regarding the unpredictable nature of the pain relief


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 90 - 90
1 Aug 2017
MacDonald S
Full Access

Metal-on-metal bearings (MoM) saw an increase in global utilisation in the last decade. This peaked in 2008 in the US, with approximately 35% of bearings being hard-on-hard (metal-on-metal, or ceramic-on-ceramic). Beginning in 2008, reports began to surface regarding local soft tissue reactions and hypersensitivity to MoM bearings. A major implant manufacturer recalled a resurfacing device in 2010 after national joint registries demonstrated higher than expected revision rates. Patients with painful MoM bearings are a difficult diagnostic challenge. The surgeon must go back to basic principles, perform a complete history and physical exam, obtain serial radiographs and basic blood work (ESR, CRP) to rule out common causes of pain and determine if the pain is, or is not, related to the bearing. The Asymptomatic MoM Arthroplasty: Patients will present for either routine follow up, or because of concerns regarding their bearing. It is important to emphasise that at this point the vast majority of patients with a MoM bearing are indeed asymptomatic and their bearings are performing well. The surgeon must take into account: a) which specific implant are they dealing with and what is its track record; b) what is the cup position; c) when to perform metal ion testing; d) when to perform further soft tissue imaging (MARS MRI, Ultrasound); e) when to discuss possible surgery. Painful MoM THA causes not related to the bearing couple: These can be broken down into two broad categories. Causes that are Extrinsic to the hip include spine, vascular, metabolic and malignancy. Causes that are Intrinsic to the hip can either be Extracapsular or Intracapsular. Painful MoM THA causes related to the bearing couple: There are now described a number of possible clinical scenarios and causes of pain that relate to the MoM bearing couple itself: A) Local hypersensitivity reaction without a significant soft tissue reaction; B) Local hypersensitivity reaction with a significant soft tissue reaction; C) Impingement and soft tissue pain secondary to large head effect. Factors related to a hypersensitivity reaction: Some patients, and prostheses, seem to be at a higher risk of developing issues following a MoM bearing, although our understanding of the interplay of these factors is still in evolution: patients at risk include all women and patients with smaller component sizes. Implant factors play a role with some implants having higher wear rates and being more prone to corrosion. Special tests: There is ongoing confusion related to the relative value of the various special tests that patients with a painful MoM undergo. A) Metal Ions - obtaining serum, or whole blood, cobalt and chromium levels is recommended as a baseline test. However, there is no established cutoff level to determine with certainty if a patient is having a hypersensitivity reaction. Metal ions therefore can be used as a clue, but cannot be relied upon in isolation to make a diagnosis. B) MARS MRI - a useful tool for demonstrating soft tissue involvement, but there are many painless, well-functioning MoM implants that have soft tissue reactions, that don't require a revision. In the painful MoM hip an MRI, or ultrasound, is recommended to look for soft tissue destruction or a fluid-filled periprosthetic lesion (pseudotumor). Significant soft tissue involvement is concerning and is commonly an indication for revision in the painful MoM hip. C) CT imaging - can be utilised to help determine cup position and combined anteversion, however, plain radiographs can give a rough estimate of this as well, so routine CT scan evaluations are not currently recommended. The painful MoM bearing, that is demonstrating significant soft tissue involvement is a concerning scenario. Earlier revision, to prevent massive abductor damage, would seem prudent for these patients. The painful MoM bearing with no significant soft tissue changes can probably be followed and reviewed at regular intervals. If the pain persists and is felt to be secondary to a hypersensitivity reaction, then revision is really the only option, although the patient must be cautioned regarding the unpredictable nature of the pain relief


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 5 - 5
1 Jan 2016
Goto K Kitamura N Kondo E Yokota M Wada S Thoyama H Yasuda K
Full Access

Introduction. Metals used for total knee arthroplasty (TKA) are well known for their good biocompatibility, but may be a source of a release of metal ions that can be a cause of local and systemic adverse effects, aseptic loosening, and hypersensitivity reactions. One of the major difficulties in performing TKA is the selection of implants for patients who are preoperatively diagnosed as subject to metal sensitivity. Alternative solutions in cases of hypersensitivity are implants without metal constituents or metallic implants treated with a non-sensitive surface process. The aim of this study was to evaluate clinical results in patients who had been preoperatively diagnosed with metal sensitivity and who subsequently were provided with the zirconia-ceramic LFA-III TKA, and with a minimum 5-year follow-up. Methods. Five patients (8 knees) with metal sensitivity underwent TKA using cemented zirconia-ceramic LFA-III implants. The LFA-III implant (KYOCERA Medical Co., Japan) is composed of a zirconia ceramic femoral component and a titanium-alloy tibial component with a polyethylene insert. All patients were female andthe average age at the time of surgery was 76.1 years. The average follow-up time was 7.2 years. Clinical and radiographic assessments were conducted with the Knee Society scoring system. Results. No patients except one who had palmoplantar pustulosis preoperatively presented systemic or local dermatitis after surgery. The mean preoperative range of motion of 97.6 degrees improved to a mean of 110.7 degrees at the time of the most recent follow-up. The mean postoperative knee and function scores were 77.1 and 66.9, respectively. Subtle periprosthetic radiolucencies were found in 2 knees after the surgery. Discussion. The zirconia-ceramic LFA-III TKA has performed well over a 5-year period in patients with metal hypersensitivity. Although this implant has a metal tibial component made of titanium, no systemic or local adverse events related to metal hypersensitivity were recorded. Ceramic implants can be an attractive alternative solution for patients suffering from hypersensitivity reactions to metals


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 30 - 30
1 Feb 2020
Hermle T Reyna AP Pfaff A Bader U Fink B Grupp T
Full Access

Introduction. Metal ion and particle release, particularly cobalt, has become an important subject in total hip arthroplasty, as it has shown to induce metal hypersensitivity, adverse local tissue reactions and systemic ion related diseases. The purpose of the following study was compare the ion release barrier function of a zirconium nitride (ZrN) multilayer coated hip stem for cemented use, designed for patients with metal ion hypersensitivity, against its uncoated version in a test configuration simulating the worst case scenario of a severely debonded hip stem. The ZrN multilayer coating is applied on a CoCrMo hip stem and consists of a thin adhesive chromium layer, five alternating intermediate layers out of chromium nitride (CrN) and chromium carbonitride (CrCN) and a final zirconium nitride (ZrN) shielding layer [1]. Methods. Hip stems with a ZrN multilayer coating (CoreHip AS, Aesculap AG, Germany) were tested in comparison with a cobalt-chrome uncoated version (CoreHip, Aesculap AG, Germany). In order to create a worst case scenario, the smallest stem size with the biggest offset in combination with an XL ceramic head (offset +7 mm) was used. The stems were embedded according to the ISO 7206-6 test in a bone cement sheet. Once the bone cement was bonded, the stem was pulled out and a PMMA grain was placed inside the femoral cavity in order to uprise the hip stem above its embedding line and simulate a debonded cemented hip stem with a severe toggling condition. The dynamic test was performed under bovine serum environment with an axial force of 3.875 kN [2] at 11.6 Hz for 15 million cycles. The test was interrupted after 1, 3, 5, 10 and 15 million cycles and the surfaces of the stems were analyzed through scanning electron microscopy (SEM) with energy dispersive X-Ray (EDX). Moreover, the test medium was analyzed for metal ion concentration (cobalt, chromium and molybdenum) using ICP-MS. Results. The SEM/EDX analysis demonstrated that the ZrN multilayer coating kept its integrity, as no trace of the substrate material (CoCrMo) could be detected. Furthermore, the taper of the ZrN group showed less fretting and corrosion than the taper of the CoCrMo stem (Fig.1). Moreover, the ion concentration analysis showed a reduction of up to two orders of magnitude in the release of cobalt, chromium and molybdenum in the ZrN coated stems in comparison with the uncoated version. Discussion. The results showed that, even in a worst case scenario of high micro-motion due to a severe stem debonding within the cement mantle, the hip stems with a ZrN multilayer coating substantially reduce the release of ions from the substrate material. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 64 - 64
1 May 2016
Campbell P Nguyen M Priestley E
Full Access

The histopathology of periprosthetic tissues has been important to understanding the relationship between wear debris and arthroplasty outcome. In a landmark 1977paper, Willert and Semlitsch (1) used a semiquantitative rating to show that tissue reactions largely reflected the extent of particulate debris. Notably, small amounts of debris, including metal, could be eliminated without “overstraining the tissues” but excess debris led to deleterious changes. Currently, a plethora of terms is used to describe tissues from metal-on-metal (M-M) hips and corroded modular connections. We reviewed the evaluation and reporting of local tissue reactions over time, and asked if a dose response has been found between metal and tissue features, and how the use of more standardized terms and quantitative methodologies could reduce the current confusion in terminology. Methods. The PubMed database was searchedbetween 2000 and 2015 for papers using “metal sensitivity /allergy /hypersensitivity, Adverse Local Tissue Reaction (ALTR): osteolysis, metallosis, lymphocytic infiltration, Aseptic Lymphocytic Vasculitis-Associated Lesions (ALVAL), Adverse Reaction to Metal Debris (ARMD) or pseudotumor/ pseudotumour” as well as metal-on-metal / metal-metal AND hip arthroplasty/replacement. Reports lacking soft tissue histological analysis were excluded. Results. 131 articles describing M-M tissue histology were found. In earlier studies, the terms metal sensitivity / hypersensitivity /allergy implied or stated the potential for a Type IV delayed type hypersensitivity response as a reason for revision. More recently those terms have largely been replaced by broader terms such as ALTR, ALVAL and ARMD. ALVAL and metal hypersensitivity were often used interchangeably, both as failure modes and histological findings. Several histology scoring systems have been published but were only used in a limited number of studies. Correlations of histological features with metal levels or component wear were inconclusive, typically because of a high degree of variability. Interestingly, there were very few descriptions that concluded that the observed reactions were benign / normal or anticipated i.e. regardless of the histological features, extent of debris or failure mode, the histology was interpreted as showing an adverse reaction. Discussion. There is now an expanded set of terms to describe tissues but they lack clear definitions and typically do not use quantitative histological data to describe a wide range of periprosthetic reactions to metal. Lower limits of inflammation, necrosis or re-organization that represent a “normal” reaction to surgery and/or small amounts of wear debris are not clearly defined and are rarely discussed. The widespread adoption of the term “adverse” in the present tissue lexicon implies a cause and effect relationship between metal wear and corrosion products and histological features even though this has yet to be determined. The use of quantitative histological scores rather than subjective histological descriptions is imperative to improve the understanding and reporting of the range of periprosthetic reactions. In particular, a new lexicon that allows for a level of tissue reaction that is not misinterpreted as adverse is required


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_14 | Pages 68 - 68
1 Mar 2013
Mokete L Nwokeyi K Mohideen M Jagt D
Full Access

Introduction. There has been much controversy around metal on metal hip replacements of late due to adverse metal reactions. There is evidence implicating lymphocyte mediated response (type IV delayed-hypersensitivity) to metal debris generated by the implants as one of the main factors responsible for the reactions. Our understanding of these adverse reactions continues to improve but we also recognize that the majority of patients with MOM implants are asymptomatic with well functioning implants. Studies have shown up to 16% allergy to metal ions on pre-operative allergy patch testing. We set out to determine the incidence of hypersensitivity to Cobalt, Chromium and Molybdenum in a arthroplasty population. Method. We assayed whole blood using a validated optimized lymphocyte transformation test, MELISA as part of a prospective randomized study on large diameter bearing surfaces. We recruited 47 subjects, 19 males, 28 females (35–75 yrs). Specific exclusions included presence of metal implants in the body and industrial exposure to metals. Results. Results were available for 46 patients. Four patients (9%) demonstrated hypersensitivity to Cobalt and none to Chromium or Molybdenum. Two were female and two male. The result was weakly positive in three patients and strongly positive in one female. Conclusion. Hypersensitivity in patients without prior exposure to Cobalt, Chromium and Molybdenum is low. The relevance of a positive hypersensitivity test and implications on the choice of bearings is a subject that requires further research. NO DISCLOSURES


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_17 | Pages 90 - 90
1 Nov 2016
Su E
Full Access

Metal-on-metal (MOM) hip arthroplasty has been associated with a variety of new failure modes that may be unfamiliar to surgeons who traditionally perform metal-on-polyethylene THR. These failure modes include adverse local tissue reaction to metal debris, hypersensitivity to metal debris, accelerated wear/metallosis, pseudotumours, and corrosion. A significant number of patients with metal-on-metal hip arthroplasty may present to surgeons for routine followup, concern over their implant, or frank clinical problems. A common issue with MOM hip arthroplasty that can lead to accelerated wear and failure is implant malposition. Malposition of a hard-on-hard bearing can lead to edge loading and accelerated wear at the articular surfaces, which will lead to elevation in blood metal ion levels and metallosis. Distinct from this failure mode is the possibility of metal hypersensitivity, which is believed to be an immunologically mediated reaction to normal amounts of metal debris. Because a modular MOM THR has multiple junctions and tapers that come into contact with one another, there also is the possibility of non-articular metal debris production and corrosion. This type of corrosion reaction can lead to soft tissue destruction not commonly seen with hip resurfacing. Therefore, it is important for orthopaedic surgeons to be aware of the intricacies of following a metal-on-metal hip arthroplasty and to be able to interpret test results such as metal ion levels and cross-sectional imaging. Furthermore, there is a difference in the incidence of problems depending upon the type of implant: hip resurfacing, small-diameter head metal-on-metal total hip replacement, and large diameter head MOM THR. This presentation will discuss the importance of routine monitoring and followup for patients with MOM THR, as well as the utility of measuring blood metal ion levels. The published risk stratification algorithm from the Hip Society will be reviewed


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 47 - 47
1 Aug 2017
Barrack R
Full Access

The role of metal sensitivity or allergy in causing persistent symptoms or failure and need for a revision of a total joint replacement has been the topic of debate and controversy for decades. There was renewed interest in this area with the rise of metal-on-metal hip arthroplasty and the advent of adverse local tissue reactions. This led to an increase in metal ion testing as well as metal sensitivity testing. With the decline of the use of metal-on-metal hip components, this is now mostly an issue in knee arthroplasty. It is well known that a substantial percentage of patients have persistent symptoms following knee replacement. What remains in question is whether allergy to metal or other materials such as PMMA may be a contributing factor. It is accepted that the incidence of positive skin patch tests is higher in symptomatic failed joint replacements. Nickel sensitivity is most common as a positive skin test with up to 15% of patients demonstrating this followed by chromium and cobalt. A recent review by Lachiewicz et al. concluded that there was insufficient evidence to recommend routine or widespread cutaneous or in vitro hypersensitivity testing before primary TKA, that there is no evidence-based rationale to recommend a routine metal allergy screening questionnaire, that there is only anecdotal support for Ni-free implants, and that local dermatitis should be treated with topical steroids. In another article, routine screening for metal allergy was not recommended, however, selective screening for history of sensitivity or unexplained pain or early loosening was suggested. Other experts have recommended a role for utilizing a commercially available alternative to components containing nickel or cobalt in patients thought to be hypersensitive. A recent study, however, concluded that there was no difference in complications, revisions, or reoperations among patients who tested positive with patch testing whether they were treated with standard components or nickel free components. Likewise, a consensus panel published results from the United Kingdom in which cobalt chrome implants were recommended regardless of the patients metal allergy status. Patient perception is important, however, and among patients who report multiple allergies of any kind, a higher percentage are likely to be dissatisfied with their knee replacement. Of more importance are those reporting a specific allergy to metal are substantially more likely to express some dissatisfaction with their components. Metal allergy as a cause of chronic pain and/or early failure of joint replacement is rare if it exists at all. It is always a diagnosis of exclusion. Patients who think they are allergic are probably more likely to be more symptomatic following joint replacement. Whether or not to use a nickel free or hypoallergenic component in such patients remains an area of controversy


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 82 - 82
1 May 2016
Trieb K
Full Access

Introduction. Total knee arthroplasty (TKA) is the second most common and successful joint replacement in orthopedics. Due to long-term results the problem of aseptic loosening, implant failure and hypersensitivity to metal ions remain. Therefore the introduction of a new TKA with ceramic tibial and femoral components is introduced. Methods. It is the aim of this prospective study to compare a full delta ceramic unconstrained TKA with its conventional counterpart (Brehm BPK-S). Each group includes 40 patients without demopgraphic differenve. All TKAs are cemented with the same surgical technique using a rotating polyethylene insert. Clinical and radiological evaluation were performed preoperatively, and 3, 12 and 24 months postoperatively using the oxford knee score, the KSS, the VAS and the EQ-5d. Results. The mean prroperative knee scores improved significantly in both groups without difference. The VAS increased from 53,4 points to 73,9 in the ceramic group and from 53,8 to 81,0 in the conventional (n.s. p=0,14) and the EQ-5d. The oxford knee score increased from 38,6 points to 21,9 in the ceramic group and from 37,6 to 20,0 in the conventional (n.s.). There were no radiolucent lines for the femur or tibia, no infections and no revisions or implant associated complications with a 12 month survival rate of 100%. Discussion. The observed clinical and radiological results are promising for the future of cermic tibial and femoral components in TKA. The ceramic components can be a solution for patients with metal ion hypersensitivity, because this is the first TKA completely metal free. Long-term results will show a possible superority of ceramic implants concerning wear, loosening and survivorship. Based on this it might also be a reliable alternative for osteoarthiritic knee joints


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 107 - 107
1 Mar 2017
Reiner T Bader N Panzram B Kretzer J Zeifang F
Full Access

Purpose. Total shoulder arthroplasty (TSA) has become a successful treatment option for degenerative shoulder disease. With the increasing incidence in primary TSA procedures during the last decades, strategies to improve implant longevity become more relevant. Implant failure is mainly associated with mechanical or biological causes. Chronic inflammation as a response to wear particle exposure is regarded as a main biological mechanism leading to implant failure. Metal ions released by fretting and corrosion at modular taper connections of orthopedic implants can cause cell-mediated hypersensitivity reactions and might lead to aseptic loosening. Modularity is also commonly used in total shoulder replacement. However, little is known about metal ion exposure in patients following TSA. The objective of this study was to determine in-vivo blood metal ion levels in patients after TSA and to compare blood metal ion levels to control subjects without metal implants. Methods. A total of 19 patients with anatomical total shoulder prosthesis (TSA group) and 20 patients with reverse total shoulder prosthesis (RSA group) who underwent unilateral total shoulder replacement at our hospital between March 2011 and December 2014 with no other metal implant or history of environmental metal ion exposure were recruited for analysis of blood metal ion concentrations of cobalt (Co), chromium (Cr) and titanium (Ti) at a mean follow-up period of 2.3 years (0.7–4.3). For comparison of metal ion concentrations blood samples were obtained in a healthy control group of 23 subjects without metal implants. Ethical approval and informed consent of each patient were obtained for this study. Results. Median cobalt ion levels were 0.14µg/l (range 0.03–0.48) in the TSA group, 0.18 µg/l (0.10–0.66) in the RSA group and 0.11µg/l (0.03–0.19) in the control goup. Median chromium ion levels were 0.34µg/l (0.09–1.26) in the TSA group, 0.48µg/l (0.17–2.41) in the RSA group and 0.14µg/l (0.04–0.99) in the control goup. Median titanium ion levels were 0.86µg/l (0.10–1.64) in the TSA group, 1.31µg/l (0.75–4.52) in the RSA group and 0.62µg/l (0.32–2.14) in the control goup. There was a statistically significant difference in chromium and titanium ion concentrations between both study groups and the control group (see figure 1–3). Conclusion. Patients with unilateral total shoulder replacement demonstrated elevated blood metal ion concentrations. Median blood metal ion levels were higher in the RSA group compared to the TSA group, which could be attributable to the modularity of the reverse total shoulder system. However, overall metal ion levels were relatively low compared to those seen in patients with metal-on-metal total hip replacements. The role of local metal ion exposure in the development of aseptic loosening or hypersensitivity reactions associated with total shoulder arthroplasty should be further investigated. For figures/tables, please contact authors directly.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 35 - 35
1 May 2019
Sculco P
Full Access

Great strides have been made in perioperative pain management after total knee arthroplasty (TKA) leading to reduced length of hospital stay, cost reduction, improved patient satisfaction, and more rapid recovery without affecting the rates of readmission after surgery. To assure a happy patient, early recognition of patients at risk for persistent postoperative pain prior to surgery is key. Patients on chronic pain medication should be evaluated by pain management specialists with the intention of reducing overall narcotic requirement prior to TKA. Patients with high anxiety levels, pain catastrophizing, and Kinesphobia are at increased risk for increased pain and poor outcomes and should be referred for cognitive behavioral therapy and coping strategies. Finally, patients with hypersensitivity syndromes localised in the soft tissue around the knee should undergo desensitization protocols prior to TKA. Patient education on the risk of increased postoperative pain is crucial to manage expectations and optimise modifiable risk factors prior to TKA. To assure a happy patient indicated for TKA, a comprehensive pain management strategy divided into pre-, intra-, and post-operative periods should be employed


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 102 - 102
1 May 2019
MacDonald S
Full Access

Metal-on-metal bearings (MoM), in both a total hip and resurfacing application, saw an increase in global utilization in the last decade. This peaked in 2008 in the US, with approximately 35% of bearings being hard-on-hard (metal-on-metal or ceramic-on-ceramic). Beginning in 2008, reports in the orthopaedic literature began to surface regrading local soft tissue reactions and hypersensitivity to metal-on-metal bearings. A major implant manufacturer recalled a resurfacing device in 2010 after national joint registries demonstrated higher than expected revision rates. Patients with painful metal-on-metal bearings presenting to the orthopaedic surgeon are a difficult diagnostic challenge. The surgeon must go back to basic principles, perform a complete history and physical exam, obtain serial radiographs and basic bloodwork (ESR, CRP) to rule out common causes of pain and determine if the pain is, or is not, related to the bearing. The Asymptomatic MoM Arthroplasty: Patients will present for either routine followup, or because of concerns regarding their bearing. It is important to emphasise that at this point the vast majority of patients with a MoM bearing are indeed asymptomatic and their bearings are performing well. The surgeon must take into account: a) which specific implant are they dealing with and what is its track record; b) what is the cup position; c) when to perform metal ion testing; d) when to perform further soft tissue imaging (MARS MRI, Ultrasound); e) when to discuss possible surgery. A simple algorithm for both painless and painful MoM Arthroplasties has been developed and will be presented


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 301 - 301
1 Mar 2013
Patel A Patel R Thomas D Stulberg SD Bauer T
Full Access

Introduction. Modular femoral necks have shown promising clinical results in total hip arthroplasty (THA) to optimize offset, rotation, and leg length. Given the wide variety of proximal femoral morphology, fine-tuning these kinematic parameters can help decrease femoroacetabular impingement, decrease wear rates and help prevent dislocations. Yet, additional implant junctions introduce additional mechanisms of failure. We present two patients who developed an abnormal soft tissue reaction consistent with a metal hypersensitivity reaction at a modular femoral neck/stem junction requiring revision arthroplasty. Methods. Two patients underwent THA for primary osteoarthritis with the same series of components: 50 mm shell, a 36 mm highly-crosslinked polyethylene liner, uncemented titanium alloy modular stem with a 130 degree Cobalt Chromium (CoCr) modular femoral neck, and 36 mm CoCr head with a +5-mm offset. Patient 1 was a 63 year-old female who had an uneventful post-operative course but presented seven months later with progressive pain in the left hip. Patient 2 was an 80 year-old female who did well post-operatively, but presented with limp and persistent pain at 10 months post-op. An initial evaluation of a painful THA to rule out aseptic loosening, infection, mal-positioning, loosening and osteolysis included radiographs, lab work (CBC, ESR, CRP, Cobalt & Chromium levels) and Metal Artifact Reduction Sequence (MARS) MRI. Results. Elevated ion levels (Table 1) and Metal Artifact Reduction Sequence (MARS) MRI were consistent with an abnormal soft tissue reaction. A histological analysis of operative specimens displayed extensive necrosis and lymphocytosis, consistent with the diagnosis of metal hypersensitivity reactions (MHSR). Both patients underwent debridement and revision femoral arthroplasty with non-modular counterparts of the original femoral implant and have been asymptomatic post-operatively at greater than 1 year follow-up. Discussion. MHSR reactions are primarily described in the setting of metal on metal articulations of the head and acetabulum in THA and hip resurfacing. These reactions have not been reported at the modular neck/stem junction. Although modular necks show promise in THA, the advantages of increased component modularity must be carefully weighed against the risks of mechanical wear and subsequent MHSR and/or component failure


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_12 | Pages 71 - 71
1 Jul 2014
MacDonald S
Full Access

Only a little over a decade ago the vast majority of primary total hip replacements performed in North America, and indeed globally, employed a conventional polyethylene insert, either in a modular version or in a cemented application. Beginning in the early 2000's there was an explosion in technology and options available for the bearing choice in total hip arthroplasty. Highly crosslinked polyethylene was introduced in 1998, and within a few short years the vast majority of polyethylene inserts performed in North America were manufactured from this material. Globally there was a mixed picture with variable market penetration. Surgeons had seen historically poor results with attempts at “improving” polyethylene in the past and many were hesitant to use this new technology. Many randomised clinical trials have been performed and all have shown to a greater or lesser degree, that indeed the highly crosslinked polyethylene insert has undergone less linear and volumetric wear than its more conventional counterpart. The challenge, however, is as we approached mid-term results, orthopaedic manufacturers began altering the polyethylene to improve wear and improve mechanical strength. Therefore while ten-year and greater data will ultimately be published, the actual polyethylene in use at that time will be a different material. Additionally while wear rates are undoubtedly lower, we are still waiting for long-term results of actual osteolytic lesion development and the effect that highly crosslinked polyethylene will have on this clinical scenario. That being said, with over a decade of clinical experience, unquestionably highly crosslinked polyethylene has truly been a revolution in design, essentially eliminating polyethylene wear as an early failure mode. During this same decade metal-on-metal implants had seen a significant resurgence in use. Metal-on-metal implants had in-vitro advantages with very low wear rates. They allowed the use of large metal heads and articulations, thereby improving range of motion and stability. Concerns always existed regarding the production of metal ions and the potential for metal hypersensitivity, as well as possible systemic effects. Metal hypersensitivity remains a diagnosis of exclusion with no definitive diagnostic tests to either screen for it, or diagnose it, if suspected. Over the past few years metal-on-metal implant use has dropped significantly, to the point now in 2013, where the only remaining application is resurfacing implants in the younger male patient. Ceramic-on-ceramic bearings enjoy the lowest wear rates of all currently available hip articulations. Historically there has been concern regarding fracturing of both the inserts and the heads, although current generation ceramic-on-ceramic bearings have a much lower reported fracture rate. The phenomenon of a squeaking articulation remains a concern for both patient and surgeon. Conflicting reports exist on whether this is related to implant malposition or is a function of the bearing itself. As with other bearings, improvements in technology continue to evolve and newer ceramics have recently been introduced and are in clinical practice. The future will continue to see the evolution of the articulation in total hip arthroplasty. Patients are undergoing total hip replacements at younger ages and clearly have higher demands than seen historically. That being said, two factors will have a major influence on future developments. The tremendous clinical success of highly crosslinked polyethylene should have us all question the need for significant changes in bearing material and the current environment following the multiple issues with metal-on-metal is one of evolutionary, rather than revolutionary, design and introduction


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 430 - 430
1 Dec 2013
Mitsui H Sugimoto K Sakamoto M
Full Access

[Introduction]. In 1995, Muller reported on the improvement of metal-on-metal (MOM) bearing over the existing metal-on-polyethylene (MOP) articulations which demonstrated more rapid wear together with granulomatous foreign body reactions, damage of periarticular bony and soft tissues and associated expansile psoas bursal masses. He suggested that adequate lubrication together with improved material properties and manufacturing technologies would bring to the market a superior device with greater longevity. We wish to present our experience with a modern version of a MOM bearing. [Material and Methods]. Between April 2008 and February 2012, we implanted 160 MOM THA with head diameters of 38–50 mm in 139 patients (21 males and 118 females). Their ages were 40–86 years (avg. 63.6 yrs). Follow up was 9 to 53 months post implantation (avg. 28 months). All implants were manufactured by one company (Wright Medical Technology, Arlington, TN, USA). The stems were of a standard titanium-aluminum alloy, either 45 ANCA-FIT or 115 PROFEMUR Z non-cemented stems. Acetabular components were all CONSERVE PLUS cobalt-chromium monoblock shells. Heads were also fabricated out of cobalt-chromium alloy, with modular junctions. Patients with complaints of groin pain and/or swelling or hip instability underwent MRI examination in order to detect the presence of fluid collections or soft tissue masses (Fig. 1 and 2). The statistical correlation between abnormal findings on MRI and age, gender, head diameter, component position and duration post-surgery was performed. [Results]. 27 hips in 23 patients (16.9%) were found to have either a fluid collection or “pseudotumor”. These were in 2 males and 21 female patients. There were 19 males and 97 females without complaints who did not undergo MRI examination. There was no difference in age between these two groups of patients (63.1 vs. 63.7 yrs). There was no difference in duration from the time of implantation, but there was an early presentation of symptomatic pseudotumor. There appeared to be a significant difference between the mean head diameter of the two groups, 41.8 mm and 44.2 mm respectively. There was no statistical difference between the two groups with regard to implant orientation: cup inclination 18–70 degrees (40.4 vs. 43.8 degrees); cup anteversion −13−49 degrees (14.0 vs. 15.0 degrees); stem anteversion 2–48 degrees (20.2 vs. 23.1 degrees); and stem offset 17.5–56.2 mm (38.2 vs. 37.8 mm). [Discussion]. In this study, it is important to emphasize that the appearance of symptoms and development of a pseudotumor occurred early after a MOM THA in some patients. It may represent a hypersensitivity to materials implanted. However, the possibility that this may represent a foreign body reaction to particulate debris produced by articulating surfaces much like that seen with alternative material such as MOP, reflective of wear, insufficient lubrication or other causes. In this regard, our study suffers from the limitation that serum levels of chromium and cobalt were not obtained from symptomatic patients. Nor were these patients skin tested for hypersensitivity to these materials. Also it will be important to subject all patients to MRI examination to evaluate the possibility of “silent” fluid collections and pseudotumors


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_8 | Pages 8 - 8
1 May 2014
MacDonald S
Full Access

Only a little over a decade ago the vast majority of primary total hip replacements performed in North America, and indeed globally, employed a conventional polyethylene insert, either in a modular version or in a cemented application. Beginning in the early 2000's there was an explosion in technology and options available for the bearing choice in total hip arthroplasty. Highly cross-linked polyethylene was introduced in 1998, and within a few short years the vast majority of polyethylene inserts performed in North America were manufactured from this material. Globally there was a mixed picture with variable market penetration. Surgeons had seen historically poor results with attempts at “improving” polyethylene in the past and many were hesitant to use this new technology. Many randomised clinical trials have been performed and all have shown to a greater or lesser degree, that indeed the highly cross-linked polyethylene insert has undergone less linear and volumetric wear than its more conventional counterpart. This replicates well the hip simulator data. The challenge however is as we approached mid-term results, orthopaedic manufacturers began altering the polyethylene to improve wear and improve mechanical strength. Therefore while ten-year and greater data will ultimately be published, the actual polyethylene in use at that time will be a different material. Additionally while wear rates are undoubtedly lower, we are still waiting for long-term results of actual osteolytic lesion development and the effect that highly cross-linked polyethylene will have on this clinical scenario. That being said, with over a decade of clinical experience, unquestionably highly cross-linked polyethylene has truly been a revolution in design, essentially eliminating polyethylene wear as an early failure mode. During this same decade metal-on-metal implants had seen a significant resurgence in use. Most major orthopaedic companies produced a metal-on-metal implant whether in the form of a more conventional modular insert, or a monoblock resurfacing-type implant, or both. Metal-on-metal implants had in-vitro advantages with very low wear rates. They allowed the use of large metal heads and articulations, thereby improving range of motion and stability. Concerns always existed regarding the production of metal ions and the potential for metal hypersensitivity, as well as possible systemic effects. Metal hypersensitivity remains a diagnosis of exclusion with no definitive diagnostic tests to either screen for it, or diagnose it, if suspected. Over the past few years metal-on-metal implant use has dropped significantly, to the point now in 2013, where the only remaining application is resurfacing implants in the younger male patient. Ceramic-on-ceramic bearings enjoy the lowest wear rates of all currently available hip articulations. Historically there has been concern regarding fracturing of both the inserts and the heads, although current generation ceramic-on-ceramic bearings have a much lower reported fracture rate. The phenomenon of a squeaking articulation remains a concern for both patient and surgeon. Conflicting reports exist on whether this is related to implant mal-position or is a function of the bearing itself. As with other bearings, improvements in technology continue to evolve and newer ceramics have recently been introduced and are in clinical practice. The future will continue to see the evolution of the articulation in total hip arthroplasty. Patients are undergoing total hip replacements at younger ages and clearly have higher demands than seen historically. That being said, two factors have will have a major influence on future developments. The tremendous clinical success of highly cross-linked polyethylene should have us all question the need for significant changes in bearing material and the current environment following the multiple issues with metal-on-metal is one of evolutionary, rather than revolutionary, design and introduction


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 7 - 7
1 Apr 2019
Paulus A Dirmeier S Hasselt S Kretzer P Bader R Jansson V Utzschneider S
Full Access

Introduction. It is well-known that wear debris generated by metal-on-metal hip replacements leads to aseptic loosening. This process starts in the local tissue where an inflammatory reaction is induced, followed by an periprosthetic osteolysis. MOM bearings generate particles as well as ions. The influence of both in human bodies is still the subject of debate. For instance hypersensitivity and high blood metal ion levels are under discussion for systemic reactions or pseudotumors around the hip replacement as a local reaction. The exact biopathologic mechanism is still unknown. The aim of this study was to investigate the impact of local injected metal ions and metal particles. Material and Methods. We used an established murine inflammation model with Balb/c mice and generated three groups. Group PBS (control group, n=10) got an injection of 50µl 0.1 vol% PBS-suspension, Group MI (Metal-ion, n=10) got an injection of 50µl metal ion suspension at a concentration of 200µg/l and Group MP (Metal-particles, n=10) got an injection of 50µl 0.1 vol% metal particle suspension each in the left knee. After incubation for 7 days the mice were euthanized and the extraction of the left knee ensued. Followed by immunhistochemical treatment with markers of inflammation that implied TNFα, IL-6, IL-1β, CD 45, CD 68, CD 3, we counted the positive cells in the synovial layer in the left knees by light microscopy, subdivided into visual fields 200× magnified. The statistical analysis was done with Kruskal-Wallis test and a post hoc Bonferroni correction. Results. The Group with metal particles showed significantly elevated inflammatory markers (TNFα, IL-6, IL-1β, CD 68, CD 45) compared to all other groups. Interestingly, CD 3 as a marker for T-lymphocytes showed no increased levels in all groups. The metal ion group showed significant elevated CD 45 expressions compared to the control group. Conclusion. The results clearly demonstrate that especially metal wear particles lead to an intensive inflammatory reaction. The tissue formations in the metal particle group show an osseous destructive behavior in previously demonstrated results, comparable to pseudotumors. But, in this study, the expression of the immunohistological markers CD 3, CD 45 and CD 68 indicate that the tissue consists of leucocytes and macrophages, whereas lymphocytes could not be detected. This might be due to an acute inflammatory reaction, whereas the adaptive immune response by T-lymphocytes seems not (yet) to be activated. Overall it must be stated that solid metal wear particles are responsible for local inflammatory reactions, whereas it is still unknown whether wear particles corrode in vivo and release a potentially high level of locally toxic metal ions