Advertisement for orthosearch.org.uk
Results 1 - 10 of 10
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 96 - 96
1 Nov 2021
Facchini A Ghezzi R Troiano E Giacchè T Cacioppo M Mondanelli N Giannotti S
Full Access

Introduction and Objective. Some periprosthetic femoral fractures (PFFs) present history and radiographic aspect consistent with an atypical femoral fracture (AFF), fulfilling the criteria for AFF except that PFFs by themselves are excluded from the diagnosis of AFFs. The aim of this study was to evaluate in a single Institution series of PFFs if any of them could be considered a periprosthetic atypical femoral fracture (PAFF), and their prevalence. Materials and Methods. Surgical records were searched for PFFs around a primary hip stem from January 2013 to December 2019. Cases were classified according to Vancouver classification. Demographic and medical history were extracted. Fisher's exact test was used for statistical analysis. Results. One-hundred-fifteen PFFs were identified, 59 of them were type B1 and 16 were type C. Radiographs and medical records were available for all patients. Twenty-four patients (32%) have been treated with bisphosphonates (BPs) for longer than 4 years. Four patients presented a fracture with characteristics of PAFF. When enlarged to all PFFs of the series, no other PAFF was found: prevalence of PAFFs was 5.3% for type B1 and C cases and 3.5% for all surgically treated PFFs. Statistical significative difference between PAFFs and PFFs was found for prolonged BPs assumption and for the level of fracture clear of the stem. Conclusions. Fracture with characteristics of AFFs can also happen over a prosthetic stem, configuring themselves as PAFFs, and they are related to prolonged BPs use. As a correct diagnosis is mandatory for proper treatment, a revision of criteria for AFFs should be considered, accepting that PAFFs exist


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 31 - 31
1 Jan 2017
Morellato K Fink B Grupp T Cristofolini L
Full Access

The stem and the rasp for cemented arthroplasty are typically designed to obtain a cement mantle 2–5 mm thick. However, sometimes a line-to-line cementation is preferred, where the femoral cavity is prepared with the same dimension as the actual stem. There are contrasting reports [1,2] about the suitability of this technique to withstand the long-term fatigue loads. While the theoretical geometry allows no space for the cement, a sort of cement mantle is formed as the cement penetrates in the spongy bone. The scopes of this study were: 1) developing a dedicated in vitro method to test line-to-line cementation; 2) assessing if a short, polished hip stem designed for a standard cementation can be safely cemented line-to-line. In order to perform long-term mechanical in vitro tests, composite bones must be used, as cadaveric bones cannot withstand millions of loading cycles [3]. For this study, the Sawbones Mod. 3406-4 were chosen: they feature an open-cell polyurethane core simulating low-density spongy bone. Post-implantation x-rays confirmed that a relevant cement-bone interdigitation was obtained. Four femurs were prepared with a CoreHip (Aesculap) with regular cement mantle (Regular). Another 4 femurs were rasped to the same rasp size, and implanted with line-to-line cementation with a larger stem (Line-to-line). The implanted femurs were subjected to an accelerated test derived from a validated protocol [3] which replicates the most demanding motor tasks of 24 years of patient activity. Implant elastic micromotions and permanent migrations were measured throughout the test. The implants were then sectioned and treated with dye penetrants to highlight the cement cracks. Elastic and permanent motions did not show any loosening trend, and never exceeded few micrometers. As expected, some damage was visible in the cement mantles after test completion, for both types of implantation (similar to retrieved cement mantles surrounding stable implants [3]. The cement damage was similar in all specimens. No sign of major disruption was visible, neither within the Regular nor in the Line-to-line specimens: in fact, the cracks were limited in length, did not seem to cross the entire mantle thickness, and did not result in any loose cement fragments. The cracks in the line-to-line implants showed the same position and distribution compared to those found in the regular implants, but were slightly longer in some specimens. This in vitro study confirmed the feasibility of simulating line-to-line cementation in vitro. Our results suggest that a stem designed for a regular cement mantle could induce slightly more damage when implanted line-to-line, but no significant trend toward loosening


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 61 - 61
1 Dec 2021
Naghavi SA Hua J Moazen M Taylor S Liu C
Full Access

Abstract. Objectives. Currently, total hip replacement surgery is an effective treatment for osteoarthritis, where the damaged hip joint is replaced with an artificial joint. Stress shielding is a mechanical phenomenon that refers to the reduction of bone density as a result of altered stresses acting on the host bone. Due to solid metallic nature and high stiffness of the current orthopaedic prostheses, surrounding bones undergo too much bone resorption secondary to stress shielding. With the use of 3D printing technology such as selective laser melting (SLM), it is now possible to produce porous graded microstructure hip stems to mimics the surrounding bone tissue properties. Method. In this study we have compared the physical and mechanical properties of two triply periodic minimal surface (TPMS) lattice structure namely gyroid and diamond TPMS. Based on initial investigations, it was decided to design, and 3D print the gyroid and diamond scaffolds having pore size of 800 and 1100 um respectively. Scaffold of each type of structure were manufactured and were tested mechanically in compression (n=8), tension (n=5) and bending (n=1). Results. Upon FEA validation of the scaffold in Abaqus, the desired scaffold for hip implant application was evaluated to have a young's modules of 12.15 GPa, yield strength of 242 MPa and porosity of 55%. Topology and lattice optimization were performed using nTopology to design an optimised graded porous hip implant based on stress shielding reduction. It was understood that the designed optimised hip implant can reduce the stress shielding effect by more than 65% when compared to the conventional generic implant. Conclusions. The designed hip implant presented in this work shows clinical promise in reducing bone loss while having enhanced osseointegration with the surrounding cortical bones. Hence, this will help reduce the risk of periprosthetic fracture and the probability of revision surgery


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_13 | Pages 76 - 76
1 Mar 2013
Holsgrove T Petheram T Miles AW Timperley AJ
Full Access

250 words max Long polished cemented femoral stems, such as the Exeter Hip Revision stem, are one option available to the revision hip arthroplasty surgeon. When proximal bone stock is compromised, distal fixation is often relied upon for stability of the femoral component. In such circumstances, torsional forces can result in debonding and loosening. This study compared the torsional behaviour of a cemented polished and featureless (plain) stem with cemented, polished stems featuring fins or flutes. Nine torsional tests were carried out on each of these three different stem designs. The finned stem construct was significantly stiffer than the fluted stem (mean 24.5 Nm/deg v 17.5 Nm/deg). The plain stem mean stiffness was less than the featured stems (13 Nm/deg), but wide variability lead to no statistically significant difference. The maximum torque of the finned (30.5 Nm) and fluted stems (29 Nm) was significantly higher than the plain stem (10.5 Nm); with no significance to the difference between the finned and fluted stems. Distal stem features may provide a more reliable and greater resistance to torque in polished, cemented revision hip stems. Finned stem features may also increase the stiffness of the construct. Consideration should thus be given to the incorporation of distal stem features in the design of revision hip stems


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 2 - 2
1 Dec 2020
Carbone V Palazzin A Bisotti M Bursi R Emili L
Full Access

Regulatory bodies impose stringent pre-market controls to certify the safety and compatibility of medical devices. However, internationally recognized standard tests may be expensive, time consuming and challenging for orthopedic implants because of many possible sizes and configurations. In addition, cost and time of standard testing may endanger the feasibility of custom-device production obtained through innovative manufacturing technologies like 3d printing. Modeling and simulation (M&S) tools could be used by manufactures and at point-of-care to improve design confidence and reliability, accelerate design cycles and processes, and optimize the amount of physical testing to be conducted. We propose an integrated cloud platform to perform in silico testing for orthopedic devices, assessing mechanical safety and electromagnetic compatibility, in line with recognized standards and regulatory guidelines. The . InSilicoTrials.com. platform contains two M&S tools for orthopedic devices: CONSELF and NuMRis. CONSELF (. conself.com. ) uses Salome-Meca 2017 to compute static implant stresses and strains on metallic orthopedic devices, following the requirements and considerations of ASTM F2996-20 for non-modular hip femoral stems and ASTM F3161-16 for total knee femoral components. Simulation results were consistent with those reported in the two standards. NuMRis (. numris.insilicomri.com. ) uses ANSYS HFSS and ANSYS Mechanical 2019R3 to compute radio-frequency energy absorption and induced heating in 1.5T and 3T MRI coils, replicating the ASTM F2182-19e2 Standard Test Method. Simulation results were validated against in vitro measurements. The integrated M&S workflow on the cloud platform allows the user to upload the 3D geometry and the material properties of the orthopedic device to be tested, automatically set up the standard testing scenarios, run simulations and process outcome, with the option to summarize the results in accordance with current FDA guidance on M&S reporting. The easy-to-use interfaces of InSilicoTrials tools run through commercial web browsers, requiring no specific expertise in computational methods or additional on-premise software and hardware resources, since all simulations are run remotely on cloud infrastructure. The integrated cloud platform can be used to evaluate design alternatives, test multi-configuration devices, perform multi-objective design optimization and identify worst-case scenarios within a family of implant sizes, or to assess the safety and compatibility of custom-made orthopedic devices. InSilicoTrials.com. is the first cloud platform offering a collection of M&S tools to perform in silico standard testing for orthopedic devices. The proposed tools allow to assess mechanical safety and electromagnetic compatibility before prototyping, preventing risks and criticalities for the patient, and helping manufacturers and point-of-care to accelerate time and reduce costs during the device development. The proposed platform promotes the broader adoption of digital evidence in preclinical trials, supporting the device submission process and pre-market regulatory evaluation, and helping secure regulatory approval


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_13 | Pages 15 - 15
1 Mar 2013
Petheram T Bone M Joyce T Partington P
Full Access

Recent NICE guidance recommends use of a well proven cemented femoral stem for hip hemiarthroplasty in management of fractured neck of femur. The Exeter Trauma Stem (ETS) has been designed based on the well proven Exeter hip stem. It has a double taper polished stem design, proclaimed to share geometry and surface finish with the Exeter hip. This study investigated the surface finish of the two stems in order to investigate the hypothesis that they were different. Two ETS and two Exeter stems were examined using a profilometer with a sensitivity of one nanometer. Macroscopic visual inspection showed that the two Exeter stems had significantly smoother surface finish than the ETS stems. The roughness average (RA) values on the ETS stems were approximately an order of magnitude higher than those of the Exeter stems, mean of 0.235μm compared with 0.025μm (p<0.0001). This difference in surface finish has implications for the biomechanical functioning of the stem. Previous change of the Exeter stem to a matt surface-finish in 1976 resulted in a significant increase in stem failure rates and an understanding of the importance of the polished surface-finish in order to function within a taper-slip philosophy. By changing the surface finish in the ETS stem, longevity of the implant may similarly be affected. Clinical results have yet to be published demonstrating this. We recommend the manufacturer reconsiders the surface finish of the ETS stem to ensure it functions as well as the Exeter primary stem with which it shares a design philosophy


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 80 - 80
1 Jul 2014
Jauch S Ng L Peirce S Dhokia V Miles A Gill H
Full Access

Summary. The required torque leading to an abrasion of the passive layer in the stem-head interface positively correlates to the assembly force. In order to limit the risk of fretting and corrosion a strong hammer blow seems to be necessary. Introduction. Modular hip prostheses are commonly used in orthopaedic surgery and offer a taper connection between stem and ball head. Taper connections are exposed to high bending loads and bear the risk of fretting and corrosion, as observed in clinical applications. This is particularly a problem for large diameter metal bearings as the negative effects may be enhanced due to the higher moments within the taper connection. Currently, it is not known how much torque is required to initiate a removal of the passive layer, which might lead to corrosion over a longer period and limits the lifetime of prostheses. Therefore, the purpose of this study was to identify the amount of torque required to start an abrasion of the passive layer within the interface dependent on the assembly force and the axial load. Materials and Methods. Titanium hip stems (Furlong H-AC, JRI, UK) and cobalt-chromium heads (⊘ 28mm, size L, JRI, UK) were assembled using a drop rig with peak forces of 4.5 kN (F. P,1. , n = 4) or 6.0 kN (F. P,2. , n = 4). The prostheses were inverted and then mounted with the head rigidly fixed to the base of a materials testing machine using a non-conducting (nylon) jig while submerged in Ringer's solution. The stems were attached to the machine actuator via non-conductive plates. An axial load (F. A,1. = 1 kN, F. A,2. = 3 kN, n = 4 each) was applied to the stems along the taper axis. After a period of equilibration a torque, increasing from 0 up to 15Nm, was manually applied. The galvanic potential at the taper interface was continuously recorded using a titanium electrode. The torque required to cause a drop in the potential of 5% was identified. For statistical analyses non-parametric tests were performed (α = 0.05). Results. Four different phases of the potential could be clearly differentiated during testing: equilibrium, removal of the passive layer leading to a drop of the potential, repassivation and then a second equilibrium. Prostheses assembled with a force of 6 kN required a significantly higher torque to start a removal of the passive layer compared to those with 4.5 kN (7.2 ± 0.5 Nm vs. 3.9 ± 1.0 Nm for F. A,1. , p = 0.029). In contrast, no influence of the axial load on the fretting behaviour of the prostheses could be found (8.0 ± 1.6 Nm for F. P,2. , p = 0.486). Discussion. Changes in the galvanic potential were observed at low torque levels for a small head diameter. With increasing head diameter the tangential force leading to a removal of the passive layer in the stem-head interface decrease resulting in a higher risk for corrosion. Component assembly with a high force reduces the risk of fretting and corrosion in the taper interface; however, it is feasible that the determined torque levels can still be reached, particularly in situations of large weight and high activity of the patient or malpositioning of the prosthesis in the body


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 4 - 4
1 May 2012
Simpson D Kendrick B Hughes M Rushforth G Gill H Murray D
Full Access

Introduction. Primary mechanical stability is important with uncemented THR because early migration is reduced, leading to more rapid osseointegration between the implant and bone. Such primary mechanical stability is provided by the design features of the device. The aim of this study was to compare the migration patterns of two uncemented hip stems, the Furlong Active and the Furlong HAC stem; the study was designed as a randomised control trial. The implants were the Furlong HAC, which is an established implant with good long term results, and the Furlong Active, which is a modified version of the Furlong HAC designed to minimise stress concentrations between the implant and bone, and thus to improve fixation. Materials and methods. The migration of 43 uncemented femoral components for total hip replacement was measured in a randomised control trial using Roentgen Stereophotogrammetric Analysis (RSA) over two years. Twenty-three Furlong HAC and twenty Furlong Active stems were implanted into 43 patients. RSA examinations were carried out post-operatively, and at six months, 12 months and 24 months post-operatively. The patients stood in-front of a purpose made calibration frame which contained accurately positioned radio-opaque markers. From the obtained images, the 3-D positions of the prosthesis and the host bone were reconstructed. Geometrical algorithms were used to identify the components of the implant. These algorithms allowed the femoral component to be studied without the need to attach markers to the prosthesis. The migration was calculated relative to the femoral coordinate system representing the anterior-posterior (A-P), medial-lateral (M-L) and proximal-distal (P-D) directions respectively. Distal migration was termed subsidence. Results. Both stems subsided significantly during the first six months following surgery but almost all stems did not progressively subside thereafter. The Furlong Active stem experienced approximately three times the amount of subsidence of the Furlong HAC stem; this difference was significant (p = 0.02). There was one subsidence outlier (four standard deviations from the mean) for the Furlong Active stem between one and two years post-operatively. Both the stems migrated laterally and rotated into valgus. Lateral migration was greater for the Furlong Active stem; at 12 and 24 months there was a significant migration of the Furlong Active head laterally of 0.51 mm (p = 0.012) and 0.58 mm (p = 0.013) respectively. There was no significant difference in clinical scores between the implants at any RSA examination post-operatively. Discussion. The initial fixation of the Furlong Active stem was not as good as the established stem making it less likely to integrate effectively with the bone. In this study, the theoretical design of a hip replacement to minimise the stress concentration between the implant and bone and thus improve fixation actually resulted in worse implant fixation. Stems designed theoretically to improve fixation may not achieve this. Therefore we recommend that new devices should be tested using Roentgen Stereophotogrammetric Analysis. Acknowledgments This work was funded by the Furlong Charitable Research Foundation


Bone & Joint Research
Vol. 6, Issue 5 | Pages 323 - 330
1 May 2017
Pijls BG Sanders IMJG Kuijper EJ Nelissen RGHH

Objectives

Infection of implants is a major problem in elective and trauma surgery. Heating is an effective way to reduce the bacterial load in food preparation, and studies on hyperthermia treatment for cancer have shown that it is possible to heat metal objects with pulsed electromagnetic fields selectively (PEMF), also known as induction heating. We therefore set out to answer the following research question: is non-contact induction heating of metallic implants effective in reducing bacterial load in vitro?

Methods

Titanium alloy cylinders (Ti6Al4V) were exposed to PEMF from an induction heater with maximum 2000 watts at 27 kHz after being contaminated with five different types of micro-organisms: Staphylococcus epidermidis; Staphylococcus aureus; Pseudomonas aeruginosa; spore-forming Bacillus cereus; and yeast Candida albicans. The cylinders were exposed to incremental target temperatures (35°C, 45°C, 50°C, 55°C, 60°C, 65°C, 70°C) for up to 3.5 minutes.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 11 | Pages 1561 - 1567
1 Nov 2005
Janssen D Aquarius R Stolk J Verdonschot N

The Capital Hip implant was a Charnley-based system which included a flanged and a roundback stem, both of which were available in stainless steel and titanium. The system was withdrawn from the market because of its inferior performance. However, all four of the designs did not produce poor rates of survival. Using a simulated-based, finite-element analysis, we have analysed the Capital Hip system. Our aim was to investigate whether our simulation was able to detect differences which could account for the varying survival between the Capital Hip designs, thereby further validating the simulation.

We created finite-element models of reconstructions with the flanged and roundback Capital Hips. A loading history was applied representing normal walking and stair-climbing, while we monitored the formation of fatigue cracks in the cement.

Corresponding to the clinical findings, our simulation was able to detect the negative effects of the titanium material and the flanged design in the Capital Hip system. Although improvements could be made by including the effect of the roughness of the surface of the stem, our study increased the value of the model as a predictive tool for determining failure of an implant.