Migration analysis after total joint arthroplasty are performed using EBRA analysis (Krismer et al., 1997) or - more accurate but also much more cost-intensive and time-consuming – via radiostereometric analysis (RSA). For the latter, additional radiographs from two inclined perspectives are needed in regular intervals in order to define the position of the implant relative to tantalum bone markers which have been implanted during surgery of the artificial joint (Fig. 1). Modern analysis software promises a migration precision along the stem axis of a hip implant of less than 100 μm (Witvoet-Brahm et al., 2007). However, as the analysis is performed semi-automatically, the results are still dependent on the subjective evaluation of the X-rays by the observer. Thus, the present phantom study aims at evaluating the inter- and intra-observer reliability, the repeatability as well as the precision and gives insight into the potential and limits of the RSA method. Considering published models, an RSA phantom model has been developed which allows a continuous and exact positioning of the prostheses in all six degrees of freedom (Fig. 2). The position sensitivities of the translative and rotative positioning components are 1 μm and 5 to 24, respectively. The roentgen setup and Model-Based RSA software (3.3, Medis specials bv, Leiden, Netherlands) was evaluated using the SL-PLUS® standard hip stem (size 7, Smith & Nephew, Baar, Switzerland). The inter-observer (10 repetitions) and intra-observer (3 observers) reliability have been considered. Additionally, the influences of the model repositioning and inclination as well as the precision after migration and rotation along the stem axis are investigated.Background
Materials and Methods
Accurate detection of migration of hip arthroplasty stems without the burden of bone markers and stereo-radiographic equipment is of interest. This would facilitate the study of stem migration in an experimental setting, but more importantly, it would allow assessing stem loosening in patients with a painful hip outside a study protocol. We developed and validated a marker-free automated CT-based spatial analysis method (CTSA) to quantify stem-bone migration in successive CT scan acquisitions. First, we segmented the bone and stem within both three-dimensional images, then we pairwise registered those elements (Fig. 1). By comparing the rigid transformations of stem and bone, we calculated the migration of the stem with reference to the bone and transferred the three translation and three rotation parameters to an anatomic coordinate system. Based on the rigid transformation, we also calculated the point of the stem that presented the maximal migration (PMM). Accuracy was assessed in a stem-bone model (Fig. 2) by imposing 39 predefined stem rotations and translations, and by comparing those with values calculated with the CTSA tool. In all cases, differences were below 0.20 mm for translations and 0.19° for rotations (95% tolerance interval (95% TI) below 0.22 mm and 0.20°, largest standard deviation of the signed error (SDSE) 0.081 mm and 0.057°). Precision was defined as stem migration calculated in eight clinical relevant zero-migration scenarios. In all cases, precision was below 0.05 mm and 0.08° (95% TI below 0.06 mm and 0.08°, largest SDSE 0.012 mm and 0.020°). The largest displacement of the PMM on the stem was 0.169mm. The precision estimated in five patients was very dependent on the CT scan resolution and was below 0.48 mm and 0.37° (95% TI below 0.59 mm and 0.61°, largest SDSE 0.202 mm and 0.279°, largest displacement of the PMM 0.972 mm). In optimized conditions, the precision in patients improved largely and was below 0.040 mm and 0.111° (largest SDSE 0.202 mm and 0.279°, largest displacement of the PMM 0.156 mm). Our marker-free automated CT-based spatial analysis can detect
Background. Dislocation is a common complication after proximal and total femur prosthesis reconstruction for primary bone sarcoma patients. Expandable prosthesis in children puts an additional challenge due to the lengthening process. Hip stability is impaired due to multiple factors: Resection of the hip stabilizers as part of the sarcoma resection: forces acts on the hip during the lengthening; and mismatch of native growing acetabulum to the metal femoral head. Surgical solutions described in literature are various with reported low rates of success. Objective. Assess a novel 3D surgical planning technology by use of 3D models (computerized and physical), 3D planning, and Patient Specific Instruments (PSI) in supporting correction of young children suffering from hip instability after expandable prosthesis reconstruction following proximal femur resection. This innovative technology creates a new dimension of visualization and customization, and could improve understanding of this complex problem and facilitate the surgical decision making and procedure. Method. Two children, both patients with Ewing Sarcoma of the left proximal femur stage-IIB, ages 3/5 years at diagnosis, were treated with conventional chemotherapy followed by proximal femur resection. Both were reconstructed with expandable prosthesis (one at resection and other 4 years after resection).
Introduction. Acetabular reconstruction of a total hip arthroplasty (THA) for a case with severe bone loss is most challenging for surgeon. Relatively high rate of failure after the reconstruction surgery have been reported. We have used Kerboull-type acetabular reinforcement devices with morsellised or bulk bone allografts for these cases. The purpose of this study was to examine the midterm results of revision THA using Kerboull-type acetabular reinforcement devices. Patients and methods. We retrospectively reviewed 20 hips of revision THA (20 patients) between February 2002 and August 2010. The mean age of the patients at the time of surgery was 67.4 years (range 45–78). All of the cases were female. The mean duration of follow-up was 6.5 years (range 2.1–10.4). The reasons of revision surgeries were aseptic loosening in 10
Purpose. A Trabecular Metal Modular Acetabular System (Zimmer, Warsaw, Indiana, USA) is a peripheral rim expansion (elliptical) cup, i.e. a non-hemispherical cup. Radiologically a non-hemispherical cup may be deferent from other conventional hemispherical cups. We reviewed radiological findings of a Trabecular Metal Modular Acetabular System chronologically. Methods. Twenty six patients with osteoarthritis underwent primary total hip arthroplasty (THA) using a Trabecular Metal Modular Acetabular System from 2011 to April 2013. Twenty five patients (follow-up rate: 96.2%) 31 hips could be followed-up over a year were registered. In common, the diameter of every femoral head was 32 mm. We planned the acetabular cup inclination angle to be 45-degree, the cup coverage with host-bone (cup-CE angle) to be over 10-degree, and high hip center was allowed up to 20mm. In case of the cup-CE angle under 10-degree, an acetabular cup was placed medially using Dorr's medial protrusio technique. We established the medial protrusion angle indicating the degree of medial protrusion of an acetabular cup over the pelvic internal wall. The medial protrusion angle was defined by the center point of THA (C) and the 2 cross-points (X. 1. , X. 2. ) which the outline of an acetabular cup crosses the Kohler's line (Figure 1). The cup anteversion angle was measured by the method of Lewinnek, and the cup fixation was evaluated according to the Tompkin's classification. Results. The average follow-up period was 1 year and 3 months (1y1m to 2y8m). The mean diameter of the cup was 54 (48 to 56) mm. Seven high-hip center joints were recognized (2 to 11 mm). The average of cup inclination angle was 42 (32 to 52) degree, of cup anteversion angle was 14 (5 to 36) degree, and of cup CE angle was 25 (−14 to 45) degree. Dorr's medial protrusio technique was necessary in 18 hips. In these 18 hips, the average of medial protrusion angle was 57 (24 to 70) degree. In 4 hips of cup-CE angle less than 10 degree, acetabular bulky bone graft was added. All 31 hips showed the stable fixation, even in 18 hips undergone medial protrusio technique. There was none of