The presence of hip osteoarthritis is associated with abnormal spinopelvic characteristics. This study aims to determine whether the pre-operative, pathological spinopelvic characteristics “normalize” at 1-year post-THA. This is a prospective, longitudinal, case-control matched cohort study. Forty-seven patients underwent pre- and post- (at one-year) THA assessments. This group was matched (age, sex, BMI) with 47 controls/volunteers with well-functioning hips. All participants underwent clinical and radiographic assessments including lateral radiographs in standing, upright-seated and deep-flexed-seated positions. Spinopelvic characteristics included change in lumbar lordosis (ΔLL), pelvic tilt (ΔPT) and
The study of spinopelvic anatomy and movement has received great interest as these characteristics influence the biomechanical behavior (and outcome) following hip arthroplasty. However, to-date there is little knowledge of what “normal” is and how this varies with age. This study aims to determine how dynamic spino-pelvic characteristics change with age, with well-functioning hips and assess how these changes are influenced by the presence of hip arthritis. This is an IRB-approved, cross-sectional, cohort study; 100 volunteers (asymptomatic hips, Oxford-Hip-sore>45) [age:53 ± 17 (24-87) years-old; 51% female; BMI: 28 ± 5] and 200 patients with end-stage hip arthritis [age:56 ± 19 (16-89) years-old; 55% female; BMI:28 ± 5] were studied. All participants underwent lateral spino-pelvic radiographs in the standing and deep-seated positions to determine maximum hip and spine flexion. Parameters measured included lumbar-lordosis (LL), pelvic incidence, pelvic-tilt (PT), pelvic-femoral angles (PFA). Lumbar
Femoroacetabular impingement (FAI) – enlarged, aspherical femoral head deformity (cam-type) or retroversion/overcoverage of the acetabulum (pincer-type) – is a leading cause for early hip osteoarthritis. Although anteverting/reverse periacetabular osteotomy (PAO) to address FAI aims to preserve the native hip and restore joint function, it is still unclear how it affects joint mobility and stability. This in vitro cadaveric study examined the effects of surgical anteverting PAO on range of motion and capsular mechanics in hips with acetabular retroversion. Twelve cadaveric hips (n = 12, m:f = 9:3; age = 41 ± 9 years; BMI = 23 ± 4 kg/m2) were included in this study. Each hip was CT imaged and indicated acetabular retroversion (i.e., crossover sign, posterior wall sign, ischial wall sign, retroversion index > 20%, axial plane acetabular version < 15°); and showed no other abnormalities on CT data. Each hip was denuded to the bone-and-capsule and mounted onto a 6-DOF robot tester (TX90, Stäubli), equipped with a universal force-torque sensor (Omega85, ATI). The robot positioned each hip in five sagittal angles: Extension, Neutral 0°, Flexion 30°, Flexion 60°, Flexion 90°; and performed hip internal-external rotations and abduction-adduction motions to 5 Nm in each position. After the intact stage was tested, each hip underwent an anteverting PAO, anteverting the acetabulum and securing the fragment with long bone screws. The capsular ligaments were preserved during the surgery and each hip was retested postoperatively in the robot. Postoperative CT imaging confirmed that the acetabular fragment was properly positioned with adequate version and head coverage. Paired sample t-tests compared the differences in range of motion before and after PAO (CI = 95%; SPSS v.24, IBM). Preoperatively, the intact hips with acetabular retroversion demonstrated constrained internal-external rotations and abduction-adduction motions. The PAO reoriented the acetabular fragment and medialized the hip joint centre, which tightened the iliofemoral ligament and slackenend the pubofemoral ligament. Postoperatively, internal rotation increased in the deep
Iliopsoas tendonitis occurs in up to 30% of patients after hip resurfacing arthroplasty (HRA) and is a common reason for revision. The primary purpose of this study was to validate our novel computational model for quantifying iliopsoas impingement in HRA patients using a case-controlled investigation. Secondary purpose was to compare these results with previously measured THA patients. We conducted a retrospective search in an experienced surgeon's database for HRA patients with iliopsoas tendonitis, confirmed via the active
Psoas tendinopathy is a potential cause of groin pain after primary total hip arthroplasty (THA). The direct anterior approach (DAA) is becoming increasingly popular as the standard approach for primary THA due to being a muscle preserving technique. It is unclear what the prevalence is for the development of psoas-related pain after DAA THA, how this can influence patient reported outcome, and which risk factors can be identified. This retrospective case control study of prospectively recorded data evaluated 1784 patients who underwent 2087 primary DAA THA procedures between January 2017 and September 2019. Psoas tendinopathy was defined as (1) persistence of groin pain after DAA THA and was triggered by active
Introduction. In the previous study regarding the relationship among maximum
Purpose. Instability following total hip arthroplasty (THA) is an unfortunately frequent and serious problem that requires through evaluation and preoperative planning before surgical intervention. Prevention through optimal index surgery is of great importance, as the management of an unstable THA is challenging even for an experienced joints surgeon. However, even after well-planned surgery, a significant incidence of recurrent instability still exists. As you know Sir John Charnley is one of the first orthopaedic surgeons to address the issue of soft-tissue tensioning (STT) in the THA. Moreover leg-length discrepancy (LLD) after THA can pose a substantial problem for the orthopaedic surgeon. Such discrepancy has been associated with complications including nerve palsy, low back pain, and abnormal gait. The objective of this study is to assess hip instability of three different FOs in same patient undergoing THA during an operation. Methods. We performed 70 patients who had undergone unilateral THA using CT based navigation system at a single institution for advanced osteoarthoritis from May 2013 to May 2014. We used postero-lateral approach in all patients. After cup and stem implantation, we assessed soft tissue tensioning in THA during operation. Trial necks were categorized into one of three groups: standard femoral offset (sFO), high femoral offset (hFO, +4mm compared to sFO) and extensive high femoral offset (ehFO, +8 mm compared to sFO). We measured distance of lift-off about each of three femoral necks using CT based navigation system and a force gauge with
Purpose. Posterior pelvis tilt (PPT) would affect lumbar lordosis and lead to
Introduction. Most of patients with unilateral hip disease shows muscle volume atrophy of pelvis and thigh in the affected side because of pain and disuse, resulting in reduced muscle weakness and limping. However, it is unclear how the muscle atrophy correlated with muscle strength in the patient with hip disorders. A previous study have demonstrated that the volume of the gluteus medius correlated with the muscle strength by volumetric measurement using 3 dimensional computed tomography (3D-CT) data, however, muscles influence each other during motions and there is no reports focusing on the relationship between some major muscles of pelvis and thigh including gluteus maximus, gluteus medius, iliopsoas and quadriceps and muscle strength in several hip and knee motions. Therefore, the purpose of the present study is to evaluate the relationship between muscle volumetric atrophy of major muscles of pelvis and thigh and muscle strength in flexion, extension and abduction of hip joints and extension of knee joint before surgery in patients with unilateral hip disease. Material and Methods. The subjects were 38 patients with unilateral hip osteoarthritis, who underwent hip joint surgery. They all underwent preoperative computed tomography (CT) for preoperative planning. There were 6 males and 32 females with average age 59.5 years old. Before surgery, isometric muscle strength in
Introduction. A deep squat (DS) is a challenging motion at the level of the hip joint generating substantial reaction forces (HJRF). As a closed chain exercise, it has great value in rehabilitation and muscle strengthening of hip and knee. During DS, the
Background. The aim of this study is to analysis the ability of these patients, treated with MOMHR, to resume sport activities by gait analysis and clinical evaluations. Metal on metal hip resurfacing (MOMHR) is indicated to treat symptomatic hip osteoarthritis in young active patients. These patients require a high level of function and desire to resume sport activities after surgery. Study Design & Methods. 30 consecutive male patients playing high impact sports with unilateral hip osteoarthritis and normal contralateral hip were included in the study, they were treated with MOMHR by the same surgeon. No patients were lost to follow. The mean age at operation was 39.1 years (range 31 to 46). Primary diagnosis was osteoarthritis. OHS, HHS, UCLA activity score were completed at pre-operative time, six months and one year after surgery. Functionally, gait analysis was performed in all patients 6 months and one year after surgery. A stereophotogrammetric system (Smart-DX, BTS, Milano, Italy, 10 cameras, 250Hz) and two platforms (9286BA Kistler Instrumente AG, Switzerland) were used. Cluster of 4 markers were attached on the skin of each bone segment, a number of anatomical landmarks were calibrated and segment anatomical frames defined, markers were positioned by the same operator. Walking, running and squat jump were analyzed and strength and range of movement of the hips and knees were calculated. Results. At follow-up times the survival rate for the whole cohort was 100%. The mean pre-op OHS was 28.1 points (range 15.0 to 38.0), at 6 months after surgery was 44.5 points (range 44 to 48), at one year after surgery was 47.9 points (range 45 to 48). The mean pre-op HHS was 54.7 points (range 33.1 to 73.4), at 6 months after surgery was 96.7 points (range 93.4 to 100), at one year after surgery was 99.7 points (range 95.7 to 100). The mean pre-op UCLA activity score was 2.7 (range 2 to 4), at 6 months after surgery was 7.4 (range 5 to 10), at one year after surgery was 8.6 (range 7 to 10). At 6 months after surgery, patients showed a reduction of the differences between the operated and the contralateral side during walking, running and squat jumping. (p<0.01). One year after the operation there were no differences. At 3 months after surgery the mean
Introduction. Hip-Spine syndrome has various clinical aspects. For example, schoolchild with severe congenital dislocation of the hip have unfavorable standing posture and disadvantageous motions in ADL. Hip-Spine syndrome is closely related closely as the adjacent lumbar vertebrae and the hip joint. Furthermore, not only the pelvis and the lumbar spine, but also the neck position might influence on the maximum
Spinopelvic mobility describes the change in lumbar lordosis and pelvic tilt from standing to sitting position. For 1° of posterior pelvic tilt, functional cup anteversion increases by 0.75° after total hip arthroplasty (THA). Thus, spinopelvic mobility is of high clinical relevance regarding the risk of implant impingement and dislocation. Our study aimed to 1) determine the proportion of OA-patients with stiff, normal or hypermobile spino-pelvic mobility and 2) to identify clinical or static standing radiographic parameters predicting spinopelvic mobility. This prospective diagnostic cohort study followed 122 consecutive patients with end-stage osteoarthritis awaiting THA. Preoperatively, the Oxford Hip Score, Oswestry Disability Index and Schober's test were assessed in a standardized clinical examination. Lateral view radiographs were taken of the lumbar spine, pelvis and proximal femur using EOS© in standing position and with femurs parallel to the floor in order to achieve a 90°-seated position. Radiographic measurements were performed for the lumbar lordosis angle (LL), sacral slope (SS), pelvic tilt (PT), pelvic incidence (PI) and pelvic-femoral-angle (PFA). The difference in PT between standing and seated allowed for patient classification based on spino-pelvic mobility into stiff (±30°). From the standing to the sitting position, the pelvis tilted backwards by a mean of 19.6° (SD 11.6) and the
Introduction. While research has been carried out widely for sagital pelvic tilt, research reports for coronal pelvic obliquity are few. The aim of this study is to evaluate changes of the pelvic obliquity before and after total hip arthroplasty. Material and Methods. This retrospective study includes 146 cases of hips that were received total hip arthroplasty. There were 20 cases of revision, and 2 cases of re-revision. 17 cases were received bilateral total hip arthroplasty. The standing plain X-ray was used for evaluation of the pelvic obliquity in both before and 1-year after surgery. The correlation of pelvic obliquity was assessed between before and after surgery. 146 cases were classified into 3 groups (A, B, and C) according to the severity of the pelvic obliquity (0º−3º, 3º−6º, and >6º). Among the groups, statistical analysis was evaluated in the leg length discrepancy and the range of motion of the hip (flexion, extension, abduction, adduction, internal and external rotation) before and after surgery with 95% confidence intervals. Results. The mean pelvic obliquity angle was 2.6º with the range of 0 to 15.9º preoperatively, while the mean angle was 2.0º with the range of 0 to 8.8º postoperatively. There was statistical correlation in pelvic obliquity between before and after surgery. The mean leg length discrepancy was −8.3 before surgery, and was 0.1 after surgery. Comparing three groups of pelvic obliquity, preoperative leg length discrepancy was significantly longer in larger pelvic obliquity groups. The range of motion in
Introduction. Soft tissue artefact (STA) affects the kinematics retrieved with skin marker-based motion capture, and thus influences the outcomes of biomechanical models that rely on such kinematics. To date, compensation for STA remains an unsolved challenge due to its complexity. Factors include its dependency on subject, on motion activity and on skin-marker configuration, its non-linearity over the movement cycle, and the scarcity of reference in-vivo estimations. The objective of this study was extending the existing knowledge of the effects of STA on the kinematics of the hip joint and on the hip joint center location, by quantifying them for a sample total hip arthroplasty (THA) population, for a broader range of activities of daily living (ADLs). Methods. Four activities of daily living (overground gait, stairs descent, chair rise and putting on socks) were measured simultaneously with optical motion capture (MC) at 100 Hz and with a movable single-plane video-fluoroscopy system (VF) at 25 Hz, for fifteen patients with successful total hip arthroplasty (THA). The joint segment positions were computed by least-square fitting for MC and by semi-automatic 2D/3D registration for VF. Anatomical coordinate systems were defined for each joint segment based on skin markers location at a reference standing position. Errors induced by STA on the retrieved joint motion were computed as the difference between MC-based kinematics and the reference VF-based kinematics. Statistical analysis was carried out to determine the whether the differences between the kinematics obtained with the two methods were significant. Results. MC underestimated the ROM of the hip joint for all activities. The ROM for the flexion-extension was underestimated by on average 4.1°, 6.5°, 8.0° and 6.9° for gait, stair decent, chair rise and putting on socks respectively. Overall, during dynamic activities the hip joint was less flexed, more adducted and more internally rotated as retrieved using MC, compared to VF. The flexion angle was underestimated by MC during late stance phase and early swing phase for both gait and stairs descent. The internal rotation of the hip was overestimated by MC throughout the whole cycle of each activity. MC error for the thigh was larger than the MC error for the pelvis. MC errors above 1 cm were observed for the location of the hip joint center, with higher values for the cranial-caudal direction. Discussion. Reduced ROM supports the notion that skin-sliding is a major contributor to STA. The underestimation of
Background. Most of contemporary total knee systems address on improving of range of motion and bearing materials. Although new total knee designs in most systems accommodated the knee morphology according to gender differences, reestablishing of the same anterior offset of the distal femur during total knee arthroplasty (TKA) has not been well addressed. Furthermore, in most total knee systems, the anterior offset of the femoral component is constant regardless of the increment of the femoral size. We hypothesized that change of the anterior offset of the distal femur during TKA might affect the quadriceps strength and immediate clinical outcomes which may result in improved design of the future femoral component. Purpose. To evaluate the peak quadriceps strength and immediate clinical outcomes related to the change of anterior offset of the distal femur during TKA. Materials & Methods. We prospectively evaluated 75 patients (75 knees) who had primary osteoarthritis and underwent an uncomplicated TKA. A measured-resection technique of surgery using a single design of semi-constrained posterior-stabilized prosthesis with patellar resurfacing was used in all knees. In every TKA, the patellar resection was quantified in order to provide a similar thickness of the patellar composite to the original patellar thickness. A uniform perioperative protocol was applied. The mean thickness from the medial and lateral sides of the resected anterior femur were evaluated and compared with the mean thickness of the anterior part of the femoral component. The peak quadriceps strength and peak
Introduction. Dual-mobility (DM) liners provide increased range of motion and stability. However, large head diameters have been associated with anterior hip pain due to impingement with surrounding soft-tissues, particularly the iliopsoas. Further, during hip extension the liner can get trapped due to anterior soft-tissue impingement that resists rotation being imparted to the liner from posterior stem-liner contact. Over time this can cause liner rim damage, leading to intra-prosthetic dislocation of the small diameter inner head. To address this, an anatomically contoured dual mobility (ACDM) liner was designed to reduce the volume of the liner below the equator that can interact with soft-tissues (Fig. 1). In this study, we utilized finite element analysis to evaluate tendon-liner contact pressure and tendon stresses with ACDM and conventional designs during hip extension, wherein the posterior edge of liner is in contact with the stem while the anterior edge is exposed to the soft-tissue. Methods. The average uniaxial stiffness (350 N/mm), and average dimensions (width × thickness = 14mm × 4mm) of 10 cadaver psoas tendon samples were determined in a separate study. The iliopsoas tendon was modelled as a Yeoh hyper-elastic material, and the material constants were tuned to match the experimental uniaxial test data. Cadaver specific FEA models were created for 5 specimens (10 hips) using computed tomography (CT) scans. The implant components were modeled as being rigid relative to the iliopsoas tendon. The iliopsoas tendon was modelled as extending from its insertion point on the lesser trochanter to the psoas notch on the pelvis for
Introduction. Interactions between hip, pelvis and spine, as abnormal spinopelvic movements, have been associated with inferior outcomes following total hip arthroplasty (THA). Changes in pelvis position lead to a mutual change in functional cup orientation, with both pelvic tilt and rotation having a significant effect on version. Hip osteoarthritis (OA) patients have shown reduced hip kinematics which may place increased demands on the pelvis and the spine. Sagittal and coronal planes assessments are commonly done as these can be adequately studied with anteroposterior and lateral radiographs. However, abnormal pelvis rotation is likely to compromise the outcome as they have a detrimental effect on cup orientation and increased impingement risk. This study aims to determine the association between dynamic motion and radiographic sagittal assessments; and examine the association between axial and sagittal spinal and pelvic kinematics between hip OA patients and healthy controls (CTRL). Methods. This is a prospective study, IRB approved. Twenty hip OA pre-THA patients (11F/9M, 67±9 years) and six CTRL (3F/3M, 46±18 years) underwent lateral spinopelvic radiographs in standing and seated bend-and-reach (SBR) positions. Pelvic tilt (PT), pelvic-femoral-angle (PFA) and lumbar lordosis (LL) angles were measured in both positions and the differences (Δ) between standing and SBR were calculated. Dynamic SBR and seated maximal-trunk-rotation (STR) were recorded in the biomechanics laboratory using a 10-infrared camera and processed on a motion capture system (Vicon, UK). Direct kinematics extracted maximal pelvic tilt (PT. max. ),
INTRODUCTION. The purpose of this study is to elucidate longitudinal kinematic changes of the hip joint during heels-down squatting after THA. METHODS. 66 patients with 76 primary cementless THAs using a CT-based navigation system were investigated using fluoroscopy. An acetabular component and an anatomical femoral component were used through the mini-posterior approach with repair of the short rotators. The femoral head size was 28mm (9 hips), 32mm (12 hips), 36mm (42 hips), and 40mm (12 hips). Longitudinal evaluation was performed at 3 months, 1 year, and 2≤ years postoperatively. Successive hip motion during heels-down squatting was recorded as serial digital radiographic images in a DICOM format using a flat panel detector. The coordinate system of the acetabular and femoral components based on the neutral standing position was defined. The images of the hip joint were matched to 3D-CAD models of the components using a2D/3D registration technique. In this system, the root mean square errors of rotation was less than 1.3°, and that of translation was less than 2.3 mm. We estimated changes in the relative angle of the femoral component to the acetabular component, which represented the hip ROM, and investigated the incidence of bony and/or prosthetic impingement during squatting (Fig.1). We also estimated changes in the pelvic posterior tilting angle (PA) using the acetabular component position change. In addition, when both components were positioned most closely during squatting, we estimated the minimum angle (MA) up to theoretical prosthetic impingement as the safety margin (Fig.2). RESULTS. No prosthetic or bony impingement and no dislocation occurred in any hips. The mean maximum
Introduction:. Dual mobility total hip arthroplasty (DM-THA) allows for very large femoral head size, which may be beneficial for hip range of motion (ROM). No clinical study has objectively compared ROM in patients with DM-THA and large (36-mm head) total hip arthroplasty (36-THA). The aim of this prospective case-control study is to test the hypotheses that DM-THA provides superior hip ROM compared to 36-THA by dynamic radiography, and that surgical approach (posterolateral [PL] versus modified anterolateral [AL]) has effect on post-operative hip ROM. Materials and Methods:. Sixteen patients (11 males, 5 females) who had undergone DM-THA with a minimum follow up of one year were age, sex and body mass index (BMI) matched to twenty patients (12 males, 8 females) with 36-THA, all operated upon by the senior author. Maximum hip-trunk flexion, extension and total hip-trunk ROM was calculated on standing lateral digital radiographs of the lower lumbar spine, pelvis and hip, using commercially available software (TraumaCad®, BrainLab, Munich, Germany) from three upright positions; standing neutral, standing with maximum