Abstract
Background
Most of contemporary total knee systems address on improving of range of motion and bearing materials. Although new total knee designs in most systems accommodated the knee morphology according to gender differences, reestablishing of the same anterior offset of the distal femur during total knee arthroplasty (TKA) has not been well addressed. Furthermore, in most total knee systems, the anterior offset of the femoral component is constant regardless of the increment of the femoral size. We hypothesized that change of the anterior offset of the distal femur during TKA might affect the quadriceps strength and immediate clinical outcomes which may result in improved design of the future femoral component.
Purpose
To evaluate the peak quadriceps strength and immediate clinical outcomes related to the change of anterior offset of the distal femur during TKA.
Materials & Methods
We prospectively evaluated 75 patients (75 knees) who had primary osteoarthritis and underwent an uncomplicated TKA. A measured-resection technique of surgery using a single design of semi-constrained posterior-stabilized prosthesis with patellar resurfacing was used in all knees. In every TKA, the patellar resection was quantified in order to provide a similar thickness of the patellar composite to the original patellar thickness. A uniform perioperative protocol was applied. The mean thickness from the medial and lateral sides of the resected anterior femur were evaluated and compared with the mean thickness of the anterior part of the femoral component. The peak quadriceps strength and peak hip flexor strength was evaluated before surgery, and then at 2 weeks, 6 weeks and 3 months, postoperatively, using a digital dynamometer. The Difference of thickness between the resected anterior femoral bone and the anterior femoral component was defined as the change of the anterior offset of the distal femur. Clinical outcomes, including Knee Society Scores (KSS) and Western Ontario and McMaster University Arthritis Index (WOMAC) scores at 2 weeks, 6 weeks and 12 weeks were evaluated in relation of muscle strengths.
Results
Patients were divided in 2 groups according to the change of the anterior offset of the distal femur during TKA. Thirty knees (group A) had similar or increased anterior offset of the distal femur and 45 knees (group B) had decreased anterior offset of the distal femur. The mean thickness of the resected anterior femoral bones in group A and B were 4.8 mm and 9.7 mm, respectively. The mean changes of anterior offset in group A and B were (+)0.7 mm and (−)4.2 mm with statistical difference (p, 0.01). There were no differences in patient's demographic data including age, sex, and body mass index (BMI). Preoperatively, both groups had similar mean peak quadriceps strength (108.04 N vs.115.52 N, p, 0.191) and mean peak hip flexor strength (105.98 N vs.108.05 N, p.0.745). At 2-week follow-up (FU), group A had significantly better peak quadriceps strength (111.53 N vs. 99.75 N, p, 0.03) and improve of total WOMAC score (32.4 points vs. 27.4 points, p, 0.03) than those of group B, The improved WOMAC score was statistical significant in subgroup of function (16.7 points vs. 12.7, p, 0.04) However, the peak hip flexor strength, KSS clinical scores and function scores were not different. At 6-week FU 12-week FU, there were no differences in all measuring parameters.
Discussion and Conclusion
Biomechanical study has shown that the anterior offset of the distal femur provides role as a lever arm for a proper quadriceps function. Therefore, with maintaining of the patellar thickness during TKA in individual patient, a constant thickness of the anterior offset of the femoral component regardless of size may result in change of the anterior offset of the distal femur and may affect the function of quadriceps. The present study demonstrated that, at 2 weeks postoperatively, patients who had increased anterior offset of the distal femur could significantly gain better peak quadriceps strength and improved WOMAC function score than those who did not. In addition, change of anterior offset of the distal femur had no relation with the peak hip flexor strength. A mean 4.2-mm decreasing of anterior offset of the distal femur during TKA caused a shorter lever arm to the quadriceps and resulted in reducing the peak quadriceps strength with no gross effect on hip flexor strength. Although peak quadriceps strength in patients who had increased anterior offset of distal femur correlated with improved WOMAC function score, this marginal statistical significance provided a very short time for advantages. As there was a similar or slightly increased of anterior femoral offset in Group A, the anterior overstuff should be very minimal. At 6 weeks and 12 weeks after surgery, we found that investigated parameters, as well as clinical outcomes, were not different in both groups. We concluded that the change of femoral offset during TKA provided a short effect on quadriceps strength and clinical outcomes for few weeks which had no clinical impact on the drive to improve the prosthetic design of the femoral component which has a constant thickness of the anterior offset.