Aims. In Asia and the Middle-East, people often flex their knees deeply
in order to perform activities of daily living. The purpose of this
study was to investigate the 3D kinematics of normal knees during
high-flexion activities. Our hypothesis was that the femorotibial
rotation, varus-valgus angle, translations, and kinematic pathway
of normal knees during
We undertook a study in which 138 female patients with a mean age of 71.2 years (51 to 82) received a standard NexGen CR-flex prosthesis in one knee and a gender-specific NexGen CR-flex prosthesis in the other. The mean follow-up period was 3.25 years (3.1 to 3.5). The aspect ratios of the standard and gender-specific prostheses were compared with that of the distal femur. The mean post-operative Knee Society knee scores were 94 (70 to 100) and 93 (70 to 100) points and the function scores were 83 (60 to 100) and 84 (60 to 100) points for the standard implants and the gender-specific designs, respectively. The mean post-operative Western Ontario and McMaster Universities score was 26.4 points (0 to 76). Patient satisfaction, the radiological results and the complication rates were similar in the two groups. In those with a standard prosthesis, the femoral component was closely matched in 80 knees (58.0%), overhung in 14 (10.1%) and undercovered the bone in 44 (31.9%). In those with a gender-specific prosthesis, it was closely matched in 15 knees (10.9%) and undercovered the bone in 123 (89.1%). Since we found no significant differences between the two groups with regard to the clinical and radiological results, patient satisfaction or complication rate, the goal of the design of the gender-specific CR-flex prosthesis to improve the outcome was not achieved in our patients.
Aims. The aims of this study were to investigate the ability to kneel after total knee arthroplasty (TKA) without patellar resurfacing, and its effect on patient-reported outcome measures (PROMs). Secondary aims included identifying which kneeling positions were most important to patients, and the influence of radiological parameters on the ability to kneel before and after TKA. Methods. This prospective longitudinal study involved 209 patients who underwent single radius cruciate-retaining TKA without patellar resurfacing. Preoperative EuroQol five-dimension questionnaire (EQ-5D), Oxford Knee Score (OKS), and the ability to achieve four kneeling positions were assessed including a single leg kneel, a double leg kneel, a
Aims. The removal of the cruciate ligaments in total knee arthroplasty (TKA) has been suggested as a potential contributing factor to patient dissatisfaction, due to alteration of the in vivo biomechanics of the knee. Bicruciate retaining (BCR) TKA allows the preservation of the cruciate ligaments, thus offering the potential to reproduce healthy kinematics. The aim of this study was to compare in vivo kinematics between the operated and contralateral knee in patients who have undergone TKA with a contemporary BCR design. Methods. A total of 29 patients who underwent unilateral BCR TKA were evaluated during single-leg deep lunges and sit-to-stand tests using a validated computer tomography and fluoroscopic imaging system. In vivo six-degrees of freedom (6DOF) kinematics were compared between the BCR TKA and the contralateral knee. Results. During single-leg deep lunge, BCR TKAs showed significantly less mean posterior femoral translation (13 mm; standard deviation (SD) 4) during terminal flexion, compared with the contralateral knee (16.6 mm, SD 3.7; p = 0.001). Similarly, BCR TKAs showed significantly less mean femoral rollback (11.6 mm (SD 4.5) vs 14.4 mm (SD 4.6); p < 0.043) during sit-to-stand. BCR TKAs showed significantly reduced internal rotation during many parts of the strenuous flexion activities particularly during
The purpose of this study was to investigate
whether a gender-specific
Introduction. Inability to reproduce 6-degrees of freedom (6DOF) kinematics, abnormal “paradoxical” anterior femoral translation and loss of normal medial pivot rotation are challenges associated with contemporary posterior cruciate retaining and posterior stabilized total knee arthroplasty (TKA). The removal of the anterior and/or both cruciate ligaments in CR/PS TKA, leading to significant kinematic alteration of the knee joint, has been suggested as one of the potential contributory factors in patients remaining dissatisfied after TKA. Bi-cruciate retaining (BCR) TKA designs allow preservation of both anterior and posterior cruciate ligaments with the potential to replicate normal knee joint kinematics. Physically demanding tasks such as sit-to-stand (STS), and deep lunging may be more sensitive tools for investigating preserved kinematic abnormalities following TKA. This study aims to compare in-vivo kinematics between the operated and the contralateral non-operated knee in patients with contemporary BCR TKA design. Methods. Twenty-nine patients (14 male; 15 female, 65.7±7.7 years) unilaterally implanted with a contemporary BCR TKA design featuring an asymmetric femoral component and independently designed medial and lateral bearings were evaluated. Mean follow-up time after BCR TKA was 12.7±5.1 months. All patients received a computer tomography (CT) scan from the pelvis to the ankles for the creation of 3D surface models of both knees (BCR TKA and non-operated). Patients performed single leg deep lunges and sit-to-stand under a validated dual fluoroscopic imaging system (DFIS) surveillance. Each patient's 2D dynamic fluoroscopic images, corresponding 3D surface bone models (for contralateral non-operated knee) and computer aided design (CAD) implant models (for the BCR TKA implanted knee) were imported into a virtual DFIS environment in MATLAB. An optimization procedure was utilized to perform matching between the 3D surface bone models and the 2D fluoroscopic image outlines. In-vivo 6DOF kinematics of the BCR TKA knees and contralateral non-operated side were quantified and analyzed. Results. When performing the
This prospective randomised controlled double-blind
trial compared two types of PFC Sigma total knee replacement (TKR),
differing in three design features aimed at improving flexion. The
outcome of a standard fixed-bearing posterior cruciate ligament-preserving
design (FB-S) was compared with that of a
This study aimed to determine the correlation between the amount of maximum flexion and the clinical outcome in 207 Koreans (333 knees) undergoing total knee replacement. The association of maximum flexion with clinical outcome was evaluated one year postoperatively using three scoring systems; the American Knee Society score, Western Ontario McMaster Universities Osteoarthritis index and the Short Form-36. The mean maximum flexion decreased post-operatively at 12 months from 140.1° (60° to 160°) to 133.0° (105° to 150°). Only the social function score of the Short Form-36 correlated significantly with maximum flexion (correlation coefficient = 0.180, p = 0.039). In comparative analyses of subgroups divided by a maximum flexion of 120°, we found no significant differences in any parameters except the social function score of the Short Form-36 (41.9 vs 47.3, p = 0.031). Knees with a maximum flexion of more than 135° had a better functional Western Ontario McMasters Universities Osteoarthritis index score than knees with maximum flexion of 135° or less (17.5 vs 14.3, p = 0.031). We found only weak correlation between the postoperative maximum flexion and the clinical parameters for pain relief, function and quality of life, even in Korean patients. Efforts to increase post-operative maximum flexion should be exercised with caution until concerns relating to
In recent years tribological development of knee replacement impants has beeen introduced with several benefits. However, concomitant problems were noticed following widespread use.
Modern total knee arthroplasty (TKA) prostheses are designed to restore near normal kinematics including high flexion. Kneeling is a high flexion, kinematically demanding activity after TKA. The debate about design choice has not yet been informed by six-degrees-of-freedom in vivo kinematics. This prospective randomized clinical trial compared kneeling kinematics in three TKA designs. In total, 68 patients were randomized to either a posterior stabilized (PS-FB), cruciate-retaining (CR-FB), or rotating platform (CR-RP) design. Of these patients, 64 completed a minimum one year follow-up. Patients completed full-flexion kneeling while being imaged using single-plane fluoroscopy. Kinematics were calculated by registering the 3D implant models onto 2D-dynamic fluoroscopic images and exported for analysis.Aims
Methods
To compare patients undergoing total knee arthroplasty (TKA) with ≤ 80° range of movement (ROM) operated with a 2 mm increase in the flexion gap with matched non-stiff patients with at least 100° of preoperative ROM and balanced flexion and extension gaps. In a retrospective cohort study, 98 TKAs (91 patients) with a preoperative ROM of ≤ 80° were examined. Mean follow-up time was 53 months (24 to 112). All TKAs in stiff knees were performed with a 2 mm increased flexion gap. Data were compared to a matched control group of 98 TKAs (86 patients) with a mean follow-up of 43 months (24 to 89). Knees in the control group had a preoperative ROM of at least 100° and balanced flexion and extension gaps. In all stiff and non-stiff knees posterior stabilized (PS) TKAs with patellar resurfacing in combination with adequate soft tissue balancing were used.Aims
Methods
It is unknown whether kinematic alignment (KA) objectively improves knee balance in total knee arthroplasty (TKA), despite this being the biomechanical rationale for its use. This study aimed to determine whether restoring the constitutional alignment using a restrictive KA protocol resulted in better quantitative knee balance than mechanical alignment (MA). We conducted a randomized superiority trial comparing patients undergoing TKA assigned to KA within a restrictive safe zone or MA. Optimal knee balance was defined as an intercompartmental pressure difference (ICPD) of 15 psi or less using a pressure sensor. The primary endpoint was the mean intraoperative ICPD at 10° of flexion prior to knee balancing. Secondary outcomes included balance at 45° and 90°, requirements for balancing procedures, and presence of tibiofemoral lift-off.Aims
Methods
The outcomes of total knee arthroplasty (TKA) depend on many factors. The impact of implant design on patient-reported outcomes is unknown. Our goal was to evaluate the patient-reported outcomes and satisfaction after primary TKA in patients with osteoarthritis undergoing primary TKA using five different brands of posterior-stabilized implant. Using our institutional registry, we identified 4135 patients who underwent TKA using one of the five most common brands of implant. These included Biomet Vanguard (Zimmer Biomet, Warsaw, Indiana) in 211 patients, DePuy/Johnson & Johnson Sigma (DePuy Synthes, Raynham, Massachusetts) in 222, Exactech Optetrak Logic (Exactech, Gainesville, Florida) in 1508, Smith & Nephew Genesis II (Smith & Nephew, London, United Kingdom) in 1415, and Zimmer NexGen (Zimmer Biomet) in 779 patients. Patients were evaluated preoperatively using the Knee Injury and Osteoarthritis Outcome Score (KOOS), Lower Extremity Activity Scale (LEAS), and 12-Item Short-Form Health Survey questionnaire (SF-12). Demographics including age, body mass index, Charlson Comorbidity Index, American Society of Anethesiologists status, sex, and smoking status were collected. Postoperatively, two-year KOOS, LEAS, SF-12, and satisfaction scores were compared between groups.Aims
Patients and Methods
Malrotation of the femoral component can result in post-operative complications in total knee arthroplasty (TKA), including patellar maltracking. Therefore, we used computational simulation to investigate the influence of femoral malrotation on contact stresses on the polyethylene (PE) insert and on the patellar button as well as on the forces on the collateral ligaments. Validated finite element (FE) models, for internal and external malrotations from 0° to 10° with regard to the neutral position, were developed to evaluate the effect of malrotation on the femoral component in TKA. Femoral malrotation in TKA on the knee joint was simulated in walking stance-phase gait and squat loading conditions.Objectives
Materials and Methods
We carried out a prospective study to assess the clinical outcome, complications and survival of the NexGen Legacy posterior-stabilised-Flex total knee replacement (TKR) in a consecutive series of 278 knees between May 2003 and February 2005. Mean follow-up for 259 TKRs (98.2%) was 3.8 years (3.0 to 4.8). Annual follow-up showed improvement in the Knee Society scores (paired This relatively large study indicates that the legacy posterior stabilised-Flex design provides excellent short-term outcome but warrants ongoing evaluation to confirm the long-term durability and functioning of the implant.
We have examined the results obtained with 72 NexGen legacy posterior stabilised-flex fixed total knee replacements in 47 patients implanted by a single surgeon between March 2003 and September 2004. Aseptic loosening of the femoral component was found in 27 (38%) of the replacements at a mean follow-up of 32 months (30 to 48) and 15 knees (21%) required revision at a mean of 23 months (11 to 45). We compared the radiologically-loose and revised knees with those which had remained well-fixed to identify the factors which had contributed to this high rate of aseptic loosening. Post-operatively, the mean maximum flexion was 136° (110° to 140°) in the loosened group and 125° (95° to 140°) in the well-fixed group (independent These implants allowed a high degree of flexion, but showed a marked rate of early loosening of the femoral component, which was associated with weight-bearing in maximum flexion.
Debate has raged over whether a cruciate retaining
(CR) or a posterior stabilised (PS) total knee replacement (TKR) provides
a better range of movement (ROM) for patients. Various sub-sets
of CR design are frequently lumped together when comparing outcomes.
Additionally, multiple factors have been proven to influence the
rate of manipulation under anaesthetic (MUA) following TKR. The
purpose of this study was to determine whether different CR bearing
insert designs provide better ROM or different MUA rates. All primary
TKRs performed by two surgeons between March 2006 and March 2009
were reviewed and 2449 CR-TKRs were identified. The same CR femoral
component, instrumentation, and tibial base plate were consistently
used. In 1334 TKRs a CR tibial insert with 3° posterior slope and
no posterior lip was used (CR-S). In 803 there was an insert with
no slope and a small posterior lip (CR-L) and in 312 knees the posterior
cruciate ligament (PCL) was either resected or lax and a deep-dish,
anterior stabilised insert was used (CR-AS). More CR-AS inserts
were used in patients with less pre-operative ROM and greater pre-operative
tibiofemoral deformity and flexion contracture (p <
0.05). The
mean improvement in ROM was highest for the CR-AS inserts (5.9°
(-40° to 55°) Cite this article:
We evaluated the impact of pre-coating the tibial
component with polymethylmethacrylate (PMMA) on implant survival
in a cohort of 16 548 primary NexGen total knee replacements (TKRs)
in 14 113 patients. In 13 835 TKRs a pre-coated tray was used while
in 2713 TKRs the non-pre-coated version of the same tray was used.
All the TKRs were performed between 2001 and 2009 and were cemented.
TKRs implanted with a pre-coated tibial component had a lower cumulative
survival than those with a non-pre-coated tibial component (p =
0.01). After adjusting for diagnosis, age, gender, body mass index,
American Society of Anesthesiologists grade, femoral coupling design, surgeon
volume and hospital volume, pre-coating was an independent risk
factor for all-cause aseptic revision (hazard ratio 2.75, p = 0.006).
Revision for aseptic loosening was uncommon for both pre-coated
and non-pre-coated trays (rates of 0.12% and 0%, respectively).
Pre-coating with PMMA does not appear to be protective of revision
for this tibial tray design at short-term follow-up. Cite this article:
The aim of this study was to compare the maximum
laxity conferred by the cruciate-retaining (CR) and posterior-stabilised
(PS) Triathlon single-radius total knee arthroplasty (TKA) for anterior
drawer, varus–valgus opening and rotation in eight cadaver knees
through a defined arc of flexion (0º to 110º). The null hypothesis
was that the limits of laxity of CR- and PS-TKAs are not significantly
different. The investigation was undertaken in eight loaded cadaver knees
undergoing subjective stress testing using a measurement rig. Firstly
the native knee was tested prior to preparation for CR-TKA and subsequently
for PS-TKA implantation. Surgical navigation was used to track maximal
displacements/rotations at 0º, 30º, 60º, 90º and 110° of flexion.
Mixed-effects modelling was used to define the behaviour of the
TKAs. The laxity measured for the CR- and PS-TKAs revealed no statistically
significant differences over the studied flexion arc for the two
versions of TKA. Compared with the native knee both TKAs exhibited
slightly increased anterior drawer and decreased varus-valgus and
internal-external roational laxities. We believe further study is required
to define the clinical states for which the additional constraint
offered by a PS-TKA implant may be beneficial. Cite this article:
We have studied the concept of posterior condylar offset and the importance of its restoration on the maximum range of knee flexion after posterior-cruciate-ligament-retaining total knee replacement (TKR). We measured the difference in the posterior condylar offset before and one year after operation in 69 patients who had undergone a primary cruciate-sacrificing mobile bearing TKR by one surgeon using the same implant and a standardised operating technique. In all the patients true pre- and post-operative lateral radiographs had been taken. The mean pre- and post-operative posterior condylar offset was 25.9 mm (21 to 35) and 26.9 mm (21 to 34), respectively. The mean difference in posterior condylar offset was + 1 mm (−6 to +5). The mean pre-operative knee flexion was 111° (62° to 146°) and at one year postoperatively, it was 107° (51° to 137°). There was no statistical correlation between the change in knee flexion and the difference in the posterior condylar offset after TKR (Pearson correlation coefficient r = −0.06, p = 0.69).