Advertisement for orthosearch.org.uk
Results 1 - 20 of 929
Results per page:
The Bone & Joint Journal
Vol. 98-B, Issue 3 | Pages 374 - 380
1 Mar 2016
Kocsis G Thyagarajan DS Fairbairn KJ Wallace WA

Aims. Glenoid bone loss can be a challenging problem when revising a shoulder arthroplasty. Precise pre-operative planning based on plain radiographs or CT scans is essential. We have investigated a new radiological classification system to describe the degree of medialisation of the bony glenoid and that will indicate the amount of bone potentially available for supporting a glenoid component. It depends on the relationship between the most medial part of the articular surface of the glenoid with the base of the coracoid process and the spinoglenoid notch: it classifies the degree of bone loss into three types. It also attempts to predict the type of glenoid reconstruction that may be possible (impaction bone grafting, structural grafting or simple non-augmented arthroplasty) and gives guidance about whether a pre-operative CT scan is indicated. Patients and Methods. Inter-method reliability between plain radiographs and CT scans was assessed retrospectively by three independent observers using data from 39 randomly selected patients. . Inter-observer reliability and test-retest reliability was tested on the same cohort using Cohen's kappa statistics. Correlation of the type of glenoid with the Constant score and its pain component was analysed using the Kruskal-Wallis method on data from 128 patients. Anatomical studies of the scapula were reviewed to explain the findings. Results. Excellent inter-method reliability, inter-observer and test-retest reliability were seen. The system did not correlate with the Constant score, but correlated well with its pain component. . Take home message: Our system of classification is a helpful guide to the degree of glenoid bone loss when embarking on revision shoulder arthroplasty. Cite this article: Bone Joint J 2016;98-B:374–80


The Bone & Joint Journal
Vol. 105-B, Issue 8 | Pages 912 - 919
1 Aug 2023
Cunningham LJ Walton M Bale S Trail IA

Aims. Reverse total shoulder arthroplasty (rTSA) can be used in complex cases when the glenoid requires reconstruction. In this study, a baseplate with composite bone autograft and a central trabecular titanium peg was implanted, and its migration was assessed for two years postoperatively using radiostereometric analysis (RSA). Methods. A total of 14 patients who underwent a rTSA with an autograft consented to participate. Of these, 11 had a primary rTSA using humeral head autograft and three had a revision rTSA with autograft harvested from the iliac crest. The mean age of the patients was 66 years (39 to 81). Tantalum beads were implanted in the scapula around the glenoid. RSA imaging (stereographic radiographs) was undertaken immediately postoperatively and at three, six, 12, and 24 months. Analysis was completed using model-based RSA software. Outcomes were collected preoperatively and at two years postoperatively, including the Oxford Shoulder Score, the American Shoulder and Elbow Score, and a visual analogue score for pain. A Constant score was also obtained for the assessment of strength and range of motion. Results. RSA analysis showed a small increase in all translation and rotational values up to six months postoperatively, consistent with settling of the implant. The mean values plateaued by 12 months, with no evidence of further migration. In four patients, there was significant variation outside the mean, which corresponded to postoperative complications. There was a significant improvement in the clinical and patient-reported outcomes from the preoperative values to those at two years postoperatively (p < 0.001). Conclusion. These findings show, using RSA, that a glenoid baseplate composite of a trabecular titanium peg with autograft stabilizes within the glenoid about 12 months after surgery, and reinforce findings from a previous study of this implant/graft with CT scans at two years postoperatively, indicating that this type of structural composite results in sound early fixation. Cite this article: Bone Joint J 2023;105-B(8):912–919


The Bone & Joint Journal
Vol. 98-B, Issue 1 | Pages 75 - 80
1 Jan 2016
Merolla G Chin P Sasyniuk TM Paladini P Porcellini G

Aims. We evaluated clinical and radiographic outcomes of total shoulder arthroplasty (TSA) using the second-generation Trabecular Metal (TM) Glenoid component. The first generation component was withdrawn in 2005 after a series of failures were reported. Between 2009 and 2012, 40 consecutive patients with unilateral TSA using the second-generation component were enrolled in this clinical study. The mean age of the patients was 63.8 years (40 to 75) and the mean follow-up was 38 months (24 to 42). Methods. Patients were evaluated using the Constant score (CS), the American Shoulder and Elbow Surgeons (ASES) score and routine radiographs. Results. Significant differences were found between the pre- and post-operative CS (p = 0.003), ASES (p = 0.009) scores and CS subscores of pain (p < 0.001), strength (p < 0.001) and mobility items (p < 0.05). No glenoid or humeral components migrated. Posterior thinning of the keel and slight wear at the polyethylene-TM interface was observed in one patient but was asymptomatic. Radiolucent lines were found around three humeral (< 1.5 mm) and two glenoid components (< 1 mm) and all were asymptomatic. Discussion. TSA with the second-generation TM Glenoid component results in satisfactory to excellent clinical performance, function, and subjective satisfaction at a mean follow-up of about three years. Radiographic changes were few and did not affect the outcome. Take home message: This paper highlights that the second generation Trabecular Metal Glenoid has better outcomes than those reported with the first-generation component.  . Cite this article: Bone Joint J 2016;98-B:75–80


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 86 - 86
11 Apr 2023
Souleiman F Zderic I Pastor T Varga P Gueorguiev B Richards G Osterhoff G Hepp P Theopold J
Full Access

Osteochondral glenoid loss is associated with recurrent shoulder instability. The critical threshold for surgical stabilization is multidimensional and conclusively unknown. The aim of this work was to provide a well- measurable surrogate parameter of an unstable shoulder joint for the frequent anterior-inferior dislocation direction. The shoulder stability ratio (SSR) of 10 paired human cadaveric glenoids was determined in anterior-inferior dislocation direction. Osteochondral defects were simulated by gradually removing osteochondral structures in 5%-stages up to 20% of the intact diameter. The glenoid morphological parameters glenoid depth, concavity gradient, and defect radius were measured at each stage by means of optical motion tracking. Based on these parameters, the osteochondral stability ratio (OSSR) was calculated. Correlation analyses between SSR and all morphological parameters, as well as OSSR were performed. The loss of SSR, concavity gradient, depth and OSSR with increasing defect size was significant (all p<0.001). The loss of SSR strongly correlated with the losses of concavity gradient (PCC = 0.918), of depth (PCC = 0.899), and of OSSR (PCC = 0.949). In contrast, the percentage loss based on intact diameter (defect size) correlated weaker with SSR (PCC=0.687). Small osteochondral defects (≤10%) led to significantly higher SSR decrease in small glenoids (diameter <25mm) compared to large (≥ 25mm) ones (p ≤ 0.009). From a biomechanical perspective, the losses of concavity gradient, glenoid depth and OSSR correlate strong with the loss of SSR. Therefore, especially the loss of glenoidal depth may be considered as a valid and reliable alternative parameter to describe shoulder instability. Furthermore, smaller glenoids are more vulnerable to become unstable in case of small osteochondral loosening. On the other hand, the standardly used percentage defect size based on intact diameter correlates weaker with the magnitude of instability and may therefore not be a valid parameter for judgement of shoulder instability


The Bone & Joint Journal
Vol. 100-B, Issue 3 | Pages 331 - 337
1 Mar 2018
Inui H Nobuhara K

Aims. We report the clinical results of glenoid osteotomy in patients with atraumatic posteroinferior instability associated with glenoid dysplasia. Patients and Methods. The study reports results in 211 patients (249 shoulders) with atraumatic posteroinferior instability. The patients comprised 63 men and 148 women with a mean age of 20 years. The posteroinferior glenoid surface was elevated by osteotomy at the scapular neck. A body spica was applied to maintain the arm perpendicular to the glenoid for two weeks postoperatively. Clinical results were evaluated using the Rowe score and Japan Shoulder Society Shoulder Instability Score (JSS-SIS); bone union, osteoarthrosis, and articular congruity were examined on plain radiographs. Results. The Rowe score improved from 36 to 88 points, and the JSS-SIS improved from 47 to 81 points. All shoulders exhibited union without progression of osteoarthritis except one shoulder, which showed osteoarthritic change due to a previous surgery before the glenoid osteotomy. All but three shoulders showed improvement in joint congruency. Eight patients developed disordered scapulohumeral rhythm during arm elevation, and 12 patients required additional open stabilization for anterior instability. Conclusion. Good results can be expected from glenoid osteotomy in patients with atraumatic posteroinferior instability associated with glenoid dysplasia. Cite this article: Bone Joint J 2018;100-B:331–7


Bone & Joint Open
Vol. 3, Issue 6 | Pages 463 - 469
7 Jun 2022
Vetter P Magosch P Habermeyer P

Aims. The aim of this study was to determine whether there is a correlation between the grade of humeral osteoarthritis (OA) and the severity of glenoid morphology according to Walch. We hypothesized that there would be a correlation. Methods. Overal, 143 shoulders in 135 patients (73 females, 62 males) undergoing shoulder arthroplasty surgery for primary glenohumeral OA were included consecutively. Mean age was 69.3 years (47 to 85). Humeral head (HH), osteophyte length (OL), and morphology (transverse decentering of the apex, transverse, or coronal asphericity) on radiographs were correlated to the glenoid morphology according to Walch (A1, A2, B1, B2, B3), glenoid retroversion, and humeral subluxation on CT images. Results. Increased humeral OL correlated with a higher grade of glenoid morphology (A1-A2-B1-B2-B3) according to Walch (r = 0.672; p < 0.0001). It also correlated with glenoid retroversion (r = 0.707; p < 0.0001), and posterior humeral subluxation (r = 0.452; p < 0.0001). A higher humeral OL (odds ratio (OR) 1.17; 95% confidence interval (CI) 1.03 to 1.32; p = 0.013), posterior humeral subluxation (OR 1.11; 95% CI 1.01 to 1.22; p = 0.031), and glenoid retroversion (OR 1.48; 95% CI 1.30 to 1.68; p < 0.001) were independent factors for a higher glenoid morphology. More specifically, a humeral OL of ≥ 13 mm was indicative of eccentric glenoid types B2 and B3 (OR 14.20; 95% CI 5.96 to 33.85). Presence of an aspherical HH in the coronal plane was suggestive of glenoid types B2 and B3 (OR 3.34; 95% CI 1.67 to 6.68). Conclusion. The criteria of humeral OL and HH morphology are associated with increasing glenoid retroversion, posterior humeral subluxation, and eccentric glenoid wear. Therefore, humeral radiological parameters might hint at the morphology on the glenoid side. Cite this article: Bone Jt Open 2022;3(6):463–469


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 5 - 5
1 May 2016
Roche C Stroud N Palomino P Flurin P Wright T Zuckerman J DiPaola M
Full Access

Introduction. Achieving prosthesis fixation in patients with glenoid defects can be challenging, particularly when the bony defects are large. To that end, this study quantifies the impact of 2 different sizes of large anterior glenoid defects on reverse shoulder glenoid fixation in a composite scapula model using the recently approved ASTM F 2028–14 reverse shoulder glenoid loosening test method. Methods. This rTSA glenoid loosening test was conducted according to ASTM F 2028–14; we quantified glenoid fixation of a 38mm reverse shoulder (Equinoxe, Exactech, Inc) in composite/dual density scapulae (Pacific Research, Inc) before and after cyclic testing of 750N for 10k cycles. Anterior defects of 8.5mm (31% of glenoid width and 21% of glenoid height; n=7) and 12.5mm (46% of glenoid width and 30% of glenoid height; n=7) were milled into the composite scapula along the S/I glenoid axis with the aid of a custom jig. The baseplate fixation in scapula with anterior glenoid defects was compared to that of scapula without an anterior glenoid defect (n = 7). For the non-defect scapula, initial fixation of the glenoid baseplates were achieved using 4, 4.5×30mm diameter poly-axial locking compression screws. To simulate a worst case condition in each anterior defect scapulae, no 4.5×30mm compression screw were used anteriorly, instead fixation was achieved with only 3 screws (one superior, one inferior, and one posterior). A one-tailed unpaired student's t-test (p < 0.05) compared prosthesis displacements relative to each scapula (anterior defect vs no-anterior defect). Results. All glenoid baseplates remained well-fixed after cyclic loading in composite scapula without a defect and those with an 8.5mm anterior glenoid defect. However, only 6 of the 7 glenoid baseplates remained well-fixed after cyclic loading in scapula with a 12.5mm anterior glenoid defect, where 1 device failed catastrophically at 5000 cycles by loosening from the substrate. As described in Table 1, the average pre- and post-cyclic glenoid baseplate displacement in scapula with 8.5mm and 12.5mm anterior glenoid defects was significantly greater than that of baseplates in scapula without an anterior glenoid defect in both the A/P and S/I directions. Similarly, the average pre- and post-cyclic glenoid baseplate displacement in scapula with 12.5mm anterior glenoid defects was significantly greater than that of baseplates in scapula with 8.5mm anterior glenoid defects in the both the A/P and S/I directions. Discussion and Conclusions. These results demonstrate that reverse shoulder glenoid baseplate fixation was achievable in scapula with an 8.5mm anterior glenoid defect. Given that one sample catastrophically loosened in the 12.5mm anterior defect model, supplemental bone grafting may be required to achieve fixation in 12.5mm anterior glenoid defects with reverse shoulder arthroplasty. Future work should evaluate whether adding additional screws mitigates the increased displacement observed in this anterior glenoid defect scenario. This study is limited by its use of polyurethane dual-density composite scapula


The Bone & Joint Journal
Vol. 106-B, Issue 3 | Pages 268 - 276
1 Mar 2024
Park JH Lee JH Kim DY Kim HG Kim JS Lee SM Kim SC Yoo JC

Aims. This study aimed to assess the impact of using the metal-augmented glenoid baseplate (AGB) on improving clinical and radiological outcomes, as well as reducing complications, in patients with superior glenoid wear undergoing reverse shoulder arthroplasty (RSA). Methods. From January 2016 to June 2021, out of 235 patients who underwent primary RSA, 24 received a superior-AGB after off-axis reaming (Group A). Subsequently, we conducted propensity score matching in a 1:3 ratio, considering sex, age, follow-up duration, and glenoid wear (superior-inclination and retroversion), and selected 72 well-balanced matched patients who received a standard glenoid baseplate (STB) after eccentric reaming (Group B). Superior-inclination, retroversion, and lateral humeral offset (LHO) were measured to assess preoperative glenoid wear and postoperative correction, as well as to identify any complications. Clinical outcomes were measured at each outpatient visit before and after surgery. Results. There were no significant differences in demographic data and preoperative characteristics between the two groups. Both groups showed significant improvements in patient-reported outcome measures (visual analogue scale for pain, visual analogue scale for function, American Shoulder and Elbow Surgeons, Constant, and Simple Shoulder Test scores) from preoperative to final assessment (p < 0.001). However, AGB showed no additional benefit. Notably, within range of motion, Group B showed significant postoperative decrease in both external rotation and internal rotation, unlike Group A (p = 0.028 and 0.003, respectively). Both groups demonstrated a significant correction of superior-inclination after surgery, while patients in Group B exhibited a significant decrease in LHO postoperatively (p = 0.001). Regarding complications, Group A experienced more acromial stress fractures (3 cases; 12.5%), whereas Group B had a higher occurrence of scapular notching (24 cases; 33.3%) (p = 0.008). Conclusion. Both eccentric reaming with STB and off-axis reaming with AGB are effective methods for addressing superior glenoid wear in RSA, leading to improved clinical outcomes. However, it is important to be aware of the potential risks associated with eccentric reaming, which include excessive bone loss leading to reduced rotation and scapular notching. Cite this article: Bone Joint J 2024;106-B(3):268–276


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 9 - 9
1 May 2016
Roche C Flurin P Grey S Wright T Zuckerman J Jones R
Full Access

Introduction. Due to the predictability of outcomes achieved with reverse shoulder arthroplasty (rTSA), rTSA is increasingly being used in patients where glenoid fixation is compromised due to presence of glenoid wear. There are various methods to achieve glenoid fixation in patients with glenoid wear, including the use of bone grafting behind the glenoid baseplate or the use of augmented glenoid baseplates. This clinical study quantifies clinical outcomes achieved using both techniques in patients with severe glenoid wear at 2 years minimum follow-up. Methods. 80 patients (mean age: 71.6yrs) with 2 years minimum follow-up were treated by 7 fellowship trained orthopaedic surgeons using rTSA with bone graft behind the baseplate or rTSA with an augmented glenoid baseplate in patients with severe posterior glenoid wear. 39 rTSA patients (14 female, avg: 73.1 yrs; 25 male, avg: 71.5 yrs) received an augmented glenoid (cohort composed of 24 patients with an 8° posterior augment baseplate and 15 patients with a 10° superior augment baseplate) for treatment of CTA, RCT, and OA with a medially eroded scapula. 41 rTSA patients (27 female, avg: 73.0 yrs; 14 male, avg: 66.9 yrs) received glenoid bone graft (cohort composed of 5 patients with allograft and 36 patients with autograft) for treatment of CTA, RCT, and OA with a medially eroded scapula. Outcomes were scored using SST, UCLA, ASES, Constant, and SPADI metrics; active abduction, forward flexion, and internal/external rotation were also measured to quantify function. Average follow-up was 31.2 months (augment 28.3; graft 34.1). A two-tailed, unpaired t-test identified differences (p<0.05) in pre-operative, post-operative, and pre-to-post improvements. Results. A comparison of pre-operative, post-operative, and pre-to-post improvement in outcomes are presented in Tables 1–3, respectively. No difference was noted in pre-operative, post-operative, and pre-to-post improvement in outcomes between cohorts. The augmented glenoid baseplate rTSA cohort had 0 complications for a complication rate of 0%; whereas, the rTSA glenoid bone graft cohort had 6 complications (including 2 glenoid loosenings/graft failures) for a complication rate of 14.6%. Additionally, radiographic follow-up information was available for 30 of 39 augmented baseplate patients (76.9%) and 27 of 41 bone graft patients (65.9%); where the augmented baseplate rTSA cohort had a scapular notching rate of 10.0% with an average scapular notching grade of 0.1; whereas, the rTSA glenoid bone graft cohort had a scapular notching rate of 18.5% with an average scapular notching grade of 0.19. Conclusions. These results demonstrate positive outcomes can be achieved at 2 years minimum follow-up in patients with severe glenoid wear using either augmented glenoid baseplates or bone graft behind the glenoid baseplate with rTSA. While no statistical difference was noted between pre-operative, post-operative, and pre-to-post improvement in outcomes between rTSA cohorts, a substantial difference in the complication rate was noted between cohorts which may factor into the surgeon's decision of the choice of treatment technique for these patients. Additional and longer-term follow-up is needed to confirm these outcomes and trends


The Bone & Joint Journal
Vol. 105-B, Issue 6 | Pages 668 - 678
1 Jun 2023
Friedman RJ Boettcher ML Grey S Flurin P Wright TW Zuckerman JD Eichinger JK Roche C

Aims. The aim of this study was to longitudinally compare the clinical and radiological outcomes of anatomical total shoulder arthroplasty (aTSA) up to long-term follow-up, when using cemented keel, cemented peg, and hybrid cage peg glenoid components and the same humeral system. Methods. We retrospectively analyzed a multicentre, international clinical database of a single platform shoulder system to compare the short-, mid-, and long-term clinical outcomes associated with three designs of aTSA glenoid components: 294 cemented keel, 527 cemented peg, and 981 hybrid cage glenoids. Outcomes were evaluated at 4,746 postoperative timepoints for 1,802 primary aTSA, with a mean follow-up of 65 months (24 to 217). Results. Relative to their preoperative condition, each glenoid cohort had significant improvements in clinical outcomes from two years to ten years after surgery. Patients with cage glenoids had significantly better clinical outcomes, with higher patient-reported outcome scores and significantly increased active range of motion, compared with those with keel and peg glenoids. Those with cage glenoids also had significantly fewer complications (keel: 13.3%, peg: 13.1%, cage: 7.4%), revisions (keel: 7.1%, peg 9.7%, cage 3.5%), and aseptic glenoid loosening and failure (keel: 4.7%, peg: 5.8%, cage: 2.5%). Regarding radiological outcomes, 70 patients (11.2%) with cage glenoids had glenoid radiolucent lines (RLLs). The cage glenoid RLL rate was 3.3-times (p < 0.001) less than those with keel glenoids (37.3%) and 4.6-times (p < 0.001) less than those with peg glenoids (51.2%). Conclusion. These findings show that good long-term clinical and radiological outcomes can be achieved with each of the three aTSA designs of glenoid component analyzed in this study. However, there were some differences in clinical and radiological outcomes: generally, cage glenoids performed best, followed by cemented keel glenoids, and finally cemented peg glenoids. Cite this article: Bone Joint J 2023;105-B(6):668–678


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 81 - 81
14 Nov 2024
Ahmed NA Narendran K Ahmed NA
Full Access

Introduction. Anterior shoulder instability results in labral and osseous glenoid injuries. With a large osseous defect, there is a risk of recurrent dislocation of the joint, and therefore the patient must undergo surgical correction. An MRI evaluation of the patient helps to assess the soft tissue injury. Currently, the volumetric three-dimensional (3D) reconstructed CT image is the standard for measuring glenoid bone loss and the glenoid index. However, it has the disadvantage of exposing the patient to radiation and additional expenses. This study aims to compare the values of the glenoid index using MRI and CT. Method. The present study was a two-year cross-sectional study of patients with shoulder pain, trauma, and dislocation in a tertiary hospital in Karnataka. The sagittal proton density (PD) section of the glenoid and enface 3D reconstructed images of the scapula were used to calculate glenoid bone loss and the glenoid index. The baseline data were analyzed using descriptive statistics, and the Chi-square test was used to test the association of various complications with selected variables of interest. Result. The glenoid index calculated in the current study using 3D volumetric CT images and MR sagittal PD images was 0.95±0.01 and 0.95±0.01, respectively. The CT and MRI glenoid bone loss was 5.41±0.65% and 5.38±0.65%, respectively. When compared, the glenoid index and bone loss calculated by MRI and CT revealed a high correlation and significance with a p-value of <0.001. Conclusions. The study concluded that MRI is a reliable method for glenoid measurement. The sagittal PD sequence combined with an enface glenoid makes it possible to identify osseous defects linked to glenohumeral joint damage and dislocation. The values derived from 3D CT are identical to the glenoid index and bone loss determined using the sagittal PD sequence in MRI


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 37 - 37
1 Dec 2022
Fleet C de Casson FB Urvoy M Chaoui J Johnson JA Athwal G
Full Access

Knowledge of the premorbid glenoid shape and the morphological changes the bone undergoes in patients with glenohumeral arthritis can improve surgical outcomes in total and reverse shoulder arthroplasty. Several studies have previously used scapular statistical shape models (SSMs) to predict premorbid glenoid shape and evaluate glenoid erosion properties. However, current literature suggests no studies have used scapular SSMs to examine the changes in glenoid surface area in patients with glenohumeral arthritis. Therefore, the purpose of this study was to compare the glenoid articular surface area between pathologic glenoid cavities from patients with glenohumeral arthritis and their predicted premorbid shape using a scapular SSM. Furthermore, this study compared pathologic glenoid surface area with that from virtually eroded glenoid models created without influence from internal bone remodelling activity and osteophyte formation. It was hypothesized that the pathologic glenoid cavities would exhibit the greatest glenoid surface area despite the eroded nature of the glenoid and the medialization, which in a vault shape, should logically result in less surface area. Computer tomography (CT) scans from 20 patients exhibiting type A2 glenoid erosion according to the Walch classification [Walch et al., 1999] were obtained. A scapular SSM was used to predict the premorbid glenoid shape for each scapula. The scapula and humerus from each patient were automatically segmented and exported as 3D object files along with the scapular SSM from a pre-operative planning software. Each scapula and a copy of its corresponding SSM were aligned using the coracoid, lateral edge of the acromion, inferior glenoid tubercule, scapular notch, and the trigonum spinae. Points were then digitized on both the pathologic humeral and glenoid surfaces and were used in an iterative closest point (ICP) algorithm in MATLAB (MathWorks, Natick, MA, USA) to align the humerus with the glenoid surface. A Boolean subtraction was then performed between the scapular SSM and the humerus to create a virtual erosion in the scapular SSM that matched the erosion orientation of the pathologic glenoid. This led to the development of three distinct glenoid models for each patient: premorbid, pathologic, and virtually eroded (Fig. 1). The glenoid surface area from each model was then determined using 3-Matic (Materialise, Leuven, Belgium). Figure 1. (A) Premorbid glenoid model, (B) pathologic glenoid model, and (C) virtually eroded glenoid model. The average glenoid surface area for the pathologic scapular models was 70% greater compared to the premorbid glenoid models (P < 0 .001). Furthermore, the surface area of the virtual glenoid erosions was 6.4% lower on average compared to the premorbid glenoid surface area (P=0.361). The larger surface area values observed in the pathologic glenoid cavities suggests that sufficient bone remodelling exists at the periphery of the glenoid bone in patients exhibiting A2 type glenohumeral arthritis. This is further supported by the large difference in glenoid surface area between the pathologic and virtually eroded glenoid cavities as the virtually eroded models only considered humeral anatomy when creating the erosion. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_II | Pages 141 - 141
1 Apr 2005
Farron A Buechler P Dutoit M
Full Access

Purpose: The causes of glenoid loosening are multifactorial (implant design, surgical technique, bone properties, soft tissue properties). This biomechanical study was conducted to evaluate the consequences of two clinical problems often encountered in shoulder arthroplasty: subscapular tension and glenoid retroversion. Material and methods: We developed a 3D model of the shoulder including the rotator cuff. A total prosthesis was implanted by digital modellisation. The humeral prosthesis imitated the adaptable third-generation implants, with a stem and a portion of a metal sphere, were used to achieve anatomic reconstruction of the proximal humerus. The polyethylene glenoid, cemented to bone, had a central stem and a flat base. Two subscapular tension (normal and twice normal) and two glenoid positions (0° and 20° retroversion) were tested. External rotation (0–40°) and internal rotation (0–60°) were simulated. We calculated displacement of the glenohumeral contact point, joint forces and contact pressures, interosseous glenoid stress, and micromovement of the bone-cement-implant interfaces. Results: Subscapular tension produced increased forces and joint pressures, associated with moderate posterior translation of the glenohumeral contact point. Retroversion induced more marked posterior displacement of the contact point, leading to significantly higher intraosseous glenoid stress and micromovements at the interfaces. The association of subscapular tension and glenoid retroversion produced important concentration of stress forces in the posterior part of the glenoid and increased all the micromovements. Discussion: Subscapular tension and retroversion of the glenoid implant have significant biomechanical effects which can favour glenoid loosening. Correction of these two parameters must be carefully controlled during shoulder arthroplasty


The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1133 - 1140
1 Oct 2024
Olsen Kipp J Petersen ET Falstie-Jensen T Frost Teilmann J Zejden A Jellesen Åberg R de Raedt S Thillemann TM Stilling M

Aims. This study aimed to quantify the shoulder kinematics during an apprehension-relocation test in patients with anterior shoulder instability (ASI) and glenoid bone loss using the radiostereometric analysis (RSA) method. Kinematics were compared with the patient’s contralateral healthy shoulder. Methods. A total of 20 patients with ASI and > 10% glenoid bone loss and a healthy contralateral shoulder were included. RSA imaging of the patient’s shoulders was performed during a repeated apprehension-relocation test. Bone volume models were generated from CT scans, marked with anatomical coordinate systems, and aligned with the digitally reconstructed bone projections on the RSA images. The glenohumeral joint (GHJ) kinematics were evaluated in the anteroposterior and superoinferior direction of: the humeral head centre location relative to the glenoid centre; and the humeral head contact point location on the glenoid. Results. During the apprehension test, the centre of the humeral head was 1.0 mm (95% CI 0.0 to 2.0) more inferior on the glenoid for the ASI shoulder compared with the healthy shoulder. Furthermore, the contact point of the ASI shoulder was 1.4 mm (95% CI 0.3 to 2.5) more anterior and 2.0 mm (95% CI 0.8 to 3.1) more inferior on the glenoid compared with the healthy shoulder. The contact point of the ASI shoulder was 1.2 mm (95% CI 0.2 to 2.6) more anterior during the apprehension test compared to the relocation test. Conclusion. The humeral head centre was located more inferior, and the GHJ contact point was located both more anterior and inferior during the apprehension test for the ASI shoulders than the healthy shoulders. Furthermore, the contact point displacement between the apprehension and relocation test revealed increased joint laxity for the ASI shoulder than the healthy shoulders. These results contribute to existing knowledge that ASI shoulders with glenoid bone loss may also suffer from inferior shoulder instability. Cite this article: Bone Joint J 2024;106-B(10):1133–1140


The Bone & Joint Journal
Vol. 105-B, Issue 12 | Pages 1314 - 1320
1 Dec 2023
Broida SE Sullivan MH Barlow JD Morrey M Scorianz M Wagner ER Sanchez-Sotelo J Rose PS Houdek MT

Aims. The scapula is a rare site for a primary bone tumour. Only a small number of series have studied patient outcomes after treatment. Previous studies have shown a high rate of recurrence, with functional outcomes determined by the preservation of the glenohumeral joint and deltoid. The purpose of the current study was to report the outcome of patients who had undergone tumour resection that included the scapula. Methods. We reviewed 61 patients (37 male, 24 female; mean age 42 years (SD 19)) who had undergone resection of the scapula. The most common resection was type 2 (n = 34) according to the Tikhoff-Linberg classification, or type S1A (n = 35) on the Enneking classification. Results. The ten-year disease-specific survival was 76%. High tumour grade (hazard ratio (HR) 4.27; p = 0.016) and a total resection of the scapula (HR 3.84; p = 0.015) were associated with worse survival. The ten-year metastasis-free and local recurrence-free survivals were 82% and 86%, respectively. Total scapular resection (HR 6.29; p = 0.004) was associated with metastatic disease and positive margins were associated with local recurrence (HR 12.86; p = 0.001). At final follow-up, the mean shoulder forward elevation and external rotation were 79° (SD 62°) and 27° (SD 25°), respectively. The most recent functional outcomes evaluated included the mean Musculoskeletal Tumor Society Score (76% (SD 17%)), the American Shoulder and Elbow Score (73% (SD 20%)), and the Simple Shoulder Test (7 (SD 3)). Preservation of the glenoid (p = 0.001) and scapular spine (p < 0.001) improved clinical outcomes; interestingly, preservation of the scapular spine without the glenoid improved outcomes (p < 0.001) compared to preservation of the glenoid alone (p = 0.05). Conclusion. Resection of the scapula is a major undertaking with an oncological outcome related to tumour grade, and a functional outcome associated with the status of the scapular spine and glenoid. Positive resection margins are associated with local recurrence. Cite this article: Bone Joint J 2023;105-B(12):1314–1320


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 278 - 278
1 Jul 2008
CLAVERT P MILLETT P WARNER J KEMPF J
Full Access

Purpose of the study: Posterior glenoid erosio is a common finging in patients with degenerative joint disease of the shoulder. Anterior release is usually recommended, almost always with correction of the glenoid retroversion. There is no real consensus on the gravity of these posterior lesions nor on the appropriate attitude. The purpose of this study was to define the limitations of asymmetrical reaming during correction of excessive glenoid retroversion during total shoulder arthroplasty. Material and methods: Five fresh cadaver shoulders were used. The size of the glenoid cavity and the humeral head were measured to select the optimal size for the glenoid implant. The scapula was embedded in resin. Posterior glenoid erosion was created by reaming to simulate wear producing retroversion greater than 15°. A control computed tomography (CT) was obtained to verify the lesion. The glenoid cavity was then prepared in the same manner as for prosthesis implantation, restoring neutral version to enable implantation of the prosthetic component of the size initially determined. A second CT was obtained to confirm the correction of the retroversion. Results: The retroversion was corrected in all cases. At least one point of the implant penetrated the glenoid wall in all cases. In three cases, four points were outside the wall. In one case, reaming caused a fracture of the anterior glenoid rim. Finally, in one case, the size of the implant had to be reduced to avoid an oversized implant. Discussion: The limitations for asymmetrical reaming to correct for posterior wear yet leave enough bone stock for implantation of a glenoid prosthesis are not defined. This study shows that asymmetrical reaming of the anterior rim of the glenoid cavity cannot satisfactorily correct for glenoid retroverson greater than 15° because of the frailness of the anterior wall and the risk the points will penetrate the rim. These complications compromise the primary stablity of the prosthesis and probably secondary short-term and mid-term stability. Conclusion: If the glenoid retroversion is excessive (> 15°), it would be advisable to graft the posterior defect


The Bone & Joint Journal
Vol. 103-B, Issue 8 | Pages 1333 - 1338
2 Aug 2021
Kankanalu P Borton ZM Morgan ML Cresswell T Espag MP Tambe AA Clark DI

Aims. Reverse total shoulder arthroplasty (RTSA) using trabecular metal (TM)-backed glenoid implants has been introduced with the aim to increase implant survival. Only short-term reports on the outcomes of TM-RTSA have been published to date. We aim to present the seven-year survival of TM-backed glenoid implants along with minimum five-year clinical and radiological outcomes. Methods. All consecutive elective RTSAs performed at a single centre between November 2008 and October 2014 were reviewed. Patients who had primary TM-RTSA for rotator cuff arthropathy and osteoarthritis with deficient cuff were included. A total of 190 shoulders in 168 patients (41 male, 127 female) were identified for inclusion at a mean of 7.27 years (SD 1.4) from surgery. The primary outcome was survival of the implant with all-cause revision and aseptic glenoid loosening as endpoints. Secondary outcomes were clinical, radiological, and patient-related outcomes with a five-year minimum follow-up. Results. The implant was revised in ten shoulders (5.2%) with a median time to revision of 21.2 months (interquartile range (IQR) 9.9 to 41.8). The Kaplan-Meier survivorship estimate at seven years was 95.9% (95% confidence interval (CI) 91.7 to 98; 35 RTSAs at risk) for aseptic mechanical failure of the glenoid and 94.8% (95% CI 77.5 to 96.3; 35 RTSAs at risk) for all-cause revision. Minimum five-year clinical and radiological outcomes were available for 103 and 98 RTSAs respectively with a median follow-up time of six years (IQR 5.2 to 7.0). Median postoperative Oxford Shoulder Score was 38 (IQR 31 to 45); median Constant and Murley score was 60 (IQR 47.5 to 70); median forward flexion 115° (IQR 100° to 125°); median abduction 95° (IQR 80° to 120°); and external rotation 25° (IQR 15° to 40°) Scapular notching was seen in 62 RTSAs (63.2%). Conclusion. We present the largest and longest-term series of TM-backed glenoid implants demonstrating 94.8% all-cause survivorship at seven years. Specifically pertaining to glenoid loosening, survival of the implant increased to 95.9%. In addition, we report satisfactory minimum five-year clinical and radiological outcomes. Cite this article: Bone Joint J 2021;103-B(8):1333–1338


The Bone & Joint Journal
Vol. 104-B, Issue 12 | Pages 1334 - 1342
1 Dec 2022
Wilcox B Campbell RJ Low A Yeoh T

Aims. Rates of reverse total shoulder arthroplasty (rTSA) continue to grow. Glenoid bone loss and deformity remains a technical challenge to the surgeon and may reduce improvements in patients’ outcomes. However, there is no consensus as to the optimal surgical technique to best reconstruct these patients’ anatomy. This review aims to compare the outcomes of glenoid bone grafting versus augmented glenoid prostheses in the management of glenoid bone loss in primary reverse total shoulder arthroplasty. Methods. This systematic review and meta-analysis evaluated study-level data in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. We performed searches of Medline (Ovid), Embase (Ovid), and PubMed from their dates of inception to January 2022. From included studies, we analyzed data for preoperative and postoperative range of motion (ROM), patient-reported functional outcomes, and complication rates. Results. A total of 13 studies (919 shoulders) were included in the analysis. The mean age of patients at initial evaluation was 72.2 years (42 to 87), with a mean follow-up time of 40.7 months (24 to 120). Nine studies with 292 rTSAs evaluated the use of bone graft and five studies with 627 rTSAs evaluated the use of augmented glenoid baseplates. One study was analyzed in both groups. Both techniques demonstrated improvement in patient-reported outcome measures and ROM assessment, with augmented prostheses outperforming bone grafting on improvements in the American Shoulder and Elbow Surgeons Score. There was a higher complication rate (8.9% vs 3.5%; p < 0.001) and revision rate among the bone grafting group compared with the patients who were treated with augmented prostheses (2.4% vs 0.6%; p = 0.022). Conclusion. This review provides strong evidence that both bone graft and augmented glenoid baseplate techniques to address glenoid bone loss give excellent ROM and functional outcomes in primary rTSA. The use of augmented base plates may confer fewer complications and revisions. Cite this article: Bone Joint J 2022;104-B(12):1334–1342


The Bone & Joint Journal
Vol. 102-B, Issue 2 | Pages 232 - 238
1 Feb 2020
Javed S Hadi S Imam MA Gerogiannis D Foden P Monga P

Aims. Accurate measurement of the glenoid version is important in performing total shoulder arthroplasty (TSA). Our aim was to evaluate the Ellipse method, which involves formally defining the vertical mid-point of the glenoid prior to measuring the glenoid version and comparing it with the ‘classic’ Friedman method. Methods. This was a retrospective study which evaluated 100 CT scans for patients who underwent a primary TSA. The glenoid version was measured using the Friedman and Ellipse methods by two senior observers. Statistical analyses were performed using the paired t-test for significance and the Bland-Altman plot for agreement. Results. The mean glenoid version was -3.11° (-23.8° to 17.9°) using the Friedman method and -1.95° (-29.8° to 24.6°) using the Ellipse method (p = 0.002). In 16 patients the difference between methods was greater than 5°, which we considered to be clinically significant. There was poor agreement between methods with relatively large 95% limits of agreement. There was excellent inter-rater agreement between the observers for the Ellipse method and similarly, the intrarater agreement was excellent with a repeatability coefficient of 0.94. Conclusion. We recommend the use of the Ellipse modification to define the mid glenoid point prior to measuring the glenoid version in patients undergoing TSA. Cite this article: Bone Joint J 2020;102-B(2):232–238


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 19 - 19
23 Feb 2023
Sandow M Cheng Z
Full Access

This paper presents an ongoing review of the use of a wedge-shaped porous metal augments in the shoulder to address glenoid retroversion as part of anatomical total shoulder arthroplasty (aTSA). Seventy-five shoulders in 66 patients (23 women and 43 men, aged 42 to 85 years) with Walch grade B2 or C glenoids underwent porous metal glenoid augment (PMGA) insertion as part of aTSA. Patients received either a 15º or 30º PMGA wedge (secured by screws to the native glenoid) to correct excessive glenoid retroversion before a standard glenoid component was implanted using bone cement. Neither patient-specific guides nor navigation were used. Patients were prospectively assessed using shoulder functional assessments (Oxford Shoulder Score [OSS], American Shoulder and Elbow Standardized Shoulder Assessment Form [ASES], visual analogue scale [VAS] pain scores and forward elevation [FE]) preoperatively, at three, six, and 12 months, and yearly thereafter, with similar radiological surveillance. Forty-nine consecutive series shoulders had a follow-up of greater than 24 months, with a median follow-up of 48 months (range: 24–87 months). Median outcome scores improved for OSS (21 to 44), ASES (24 to 92), VAS (7 to 0), and FE (90º to 140º). Four patients died, but no others were lost to follow-up. Apart from one infection at 18 months postoperatively and one minor peg perforation, there were no complications, hardware failures, implant displacements, significant lucency or posterior re-subluxations. Radiographs showed good incorporation of the wedge augment with correction of glenoid retroversion from median 22º (13º to 46º) to 4º. All but four glenoids were corrected to within the target range (less than 10º retroversion). The porous metal wedge-shaped augments effectively addressed posterior glenoid deficiency as part of aTSA for rotator cuff intact osteoarthritis, producing satisfactory clinical outcomes with no signs of impending future failure