Advertisement for orthosearch.org.uk
Results 1 - 20 of 62
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 111 - 111
1 Aug 2012
Holleyman R Gikas P Tyler P Coward P Carrington R Skinner J Briggs T Miles J
Full Access

It is known that excessive varus alignment of the femoral stem in total hip replacement (THR) creates a sub-optimal biomechanical environment which is associated with increased rates of revision surgery and component wear. Little is known regarding the effect of femoral stem alignment on patient functional outcome. Methods. Retrospective study of primary THR patients at the RNOH. Alignment of the femoral stem component in-situ was measured subjectively by a consultant musculoskeletal radiologist in both coronal and sagittal planes using post-operative anterior-posterior and lateral pelvic radiographs. Each THR was grouped into valgus, minor-valgus, neutral, minor-varus or varus coronal plane alignment and posterior, minor-posterior, neutral, minor-anterior or anterior sagittal plane alignment. Patient reported functional outcome was assessed by Oxford Hip Score (OHS) and WOMAC questionnaires. Data analysed using a linear regression model. Results. 90 THRs were studied in 87 patients (55 Female). Mean age at THR=62 (22-86). Mean follow-up=17 months (11-39 months). Median OHS=16, WOMAC=8. Coronal plane alignment of the femoral stem was not associated with any change in OHS (p>0.05) or WOMAC score (p>0.05). Sagittal plane alignment of the femoral stem was not associated with any change in OHS (p>0.05) or WOMAC score (p>0.05). Conclusion. Although it is known that alignment of the femoral stem on sagittal and coronal planes has a direct effect on survivorship of the prosthesis, our study does not demonstrate any relationship between femoral stem alignment and functional outcome in patients undergoing primary THR


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 5 | Pages 676 - 682
1 May 2009
Østbyhaug PO Klaksvik J Romundstad P Aamodt A

Hydroxyapatite-coated standard anatomical and customised femoral stems are designed to transmit load to the metaphyseal part of the proximal femur in order to avoid stress shielding and to reduce resorption of bone. In a randomised in vitro study, we compared the changes in the pattern of cortical strain after the insertion of hydroxyapatite-coated standard anatomical and customised stems in 12 pairs of human cadaver femora. A hip simulator reproduced the physiological loads on the proximal femur in single-leg stance and stair-climbing. The cortical strains were measured before and after the insertion of the stems. Significantly higher strain shielding was seen in Gruen zones 7, 6, 5, 3 and 2 after the insertion of the anatomical stem compared with the customised stem. For the anatomical stem, the hoop strains on the femur also indicated that the load was transferred to the cortical bone at the lower metaphyseal or upper diaphyseal part of the proximal femur. The customised stem induced a strain pattern more similar to that of the intact femur than the standard, anatomical stem


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 37 - 37
1 Aug 2012
Al-Najjim M Chambers I
Full Access

Aims. To assess the early subsidence rate of the femoral stem for patients who had collarless Corail total hip replacement. Methods. Consecutive data was collected retrospectively between August 2007 and December 2009 for patients who had collarless Corail total hip replacement. Radiographic assessment of the degree of subsidence, calcar resorption, stem angulation, canal fill ratio and loosening of the stem were measured. Post operative pain, dislocation and stem revision surgery were also evaluated. Results. 48 patients were identified, providing 51 hips for the study. There were 22 male and 26 female. The mean age 64.2 years (range 38-77). Post-operative radiographs were taken at day 1, 6 weeks and one year post-operatively (range 10-18 months, mean 12.7). Significant subsidence was defined as 3 or more millimetres, we identified two patients with subsidence between 3-5mm, one patient with 6mm and two patients with 10mm subsidence at one year post-operatively. In the 5 patients with subsidence post-operatively, all significant subsidence occurred within the first 6 weeks. Canal fill ratio was measured in all patients; in the non-subsided group the ratio was an average of 72% in the lower third of the stem and 84% in the middle third. In the subsided group 75% in the lower third of the stem and 81% in the middle third, which we felt was clinically insignificant. There was no dislocation or revision for septic loosening. One patient with 10mm subsidence had liner revision for dissociation but the stem was well fixed and not revised. All patients who had significant subsidence still had functioning implants with no pain, revisions for subsidence or features of loosening. Discussion. There were no radiological features predictive of subsidence in our patients. Subsidence may be due to lack of compliance in some patients with partial weight bearing and increased Body Mass Index


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 8 | Pages 1182 - 1190
1 Nov 2001
Minovic A Milosev I Pisot V Cör A Antolic V

We analysed revised Mathys isoelastic polyacetal femoral stems with stainless-steel heads and polyethylene acetabular cups from eight patients in order to differentiate various types of particle of wear debris. Loosening of isoelastic femoral stems is associated with the formation of polyacetal wear particles as well as those of polyethylene and metal. All three types of particle were isolated simultaneously by tissue digestion followed by sucrose gradient centrifugation. Polyacetal particles were either elongated, ranging from 10 to 150 μm in size, or shred-like and up to 100 μm in size. Polyethylene particles were elongated or granules, and were typically submicron or micronsized. Polyacetal and polyethylene polymer particles were differentiated by the presence of BaSO. 4. , which is added as a radiopaque agent to polyacetal but not to polyethylene. This was easily detectable by back-scattered SEM analysis and verified by energy dispersive x-ray analysis. Two types of foreign-body giant cell (FBGC) were recognised in the histological specimens. Extremely large FBGCs with irregular polygonal particles showing an uneven, spotty birefringence in polarised light were ascribed to polyacetal debris. Smaller FBGCs with slender elongated particles shining uniformly brightly in polarisation were related to polyethylene. Mononucleated histiocytes containing both types of particle were also present. Our findings offer a better understanding of the processes involved in the loosening of polyacetal stems and indicate why the idea of ‘isoelasticity’ proved to be unsuccessful in clinical practice


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 8 | Pages 1195 - 1201
1 Nov 2001
McGrath LR Shardlow DL Ingham E Andrews M Ivory J Stone MH Fisher J

We have examined 26 retrieved, failed titanium-alloy femoral stems. The clinical details, radiological appearances and the histology of the surrounding soft tissues in each patient were also investigated. The stems were predominantly of the flanged design and had a characteristic pattern of wear. A review of the radiographs showed a series of changes, progressive with time. The first was lateral debonding with subsidence of the stem. This was followed by calcar resorption and fragmentation or fracture of the cement. Finally, osteolysis was seen, starting with a radiolucency at the cement-bone interface and progressing to endosteal cavitation. Three histological appearances were noted: granulomatous, necrobiotic and necrotic. We suggest that an unknown factor, possibly related to the design of the stem, caused it to move early. After this, micromovement at the cement-stem interface led to the generation of particulate debris and fracture of the cement. A soft-tissue reaction to the debris resulted in osteolysis and failure of fixation of the prostheses


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 139 - 139
1 Jul 2014
Ayers D Snyder B Porter A Walcott M Aubin M Drew J Greene M Bragdon C
Full Access

Summary Statement. In young, active patients cementless THR demonstrates excellent prosthetic stability by RSA and outstanding clinical outcomes at 5 years using a tapered titanium femoral stem, crosslinked polyethylene liners and either titanium or tantalum shells. Introduction. Early femoral implant stability is essential to long-term success in total hip replacement. Radiostereometric analysis (RSA) provides precise measurements of micromotion of the stem relative to the femur that are otherwise not detectable by routine radiographs. This study characterised micromotion of a tapered, cementless femoral stem and tantalum porous-coated vs. titanium acetabular shells in combination with highly cross-linked UHMWPE or conventional polyethylene liners using radiostereometric analysis (RSA) for 5 years following THR. Patients and Methods. This IRB-approved, prospective, double randomised, blinded study, involved 46 patients receiving a primary THR by a single surgeon. Each patient was randomised to receive a titanium (23) (Trilogy, Zimmer) or tantalum (23) (Modular Tantalum shell, Zimmer) uncemented hemispheric shell and either a highly-crosslinked or conventional polyethylene liner. Tantalum RSA markers were implanted in each patient. All patients had a Dorr A or B femoral canal and received a cementless, porous-coated titanium tapered stem (M/L Taper, Zimmer). All final femoral broaches were stable to rotational and longitudinal stress. RSA examinations, Harris Hip, UCLA, WOMAC, SF-12 scores were obtained at 10 days, 6 months, and annually through 5 years. Results. All patients demonstrated statistically significant improvement in Harris Hip, WOMAC, and SF-12 PCS scores post-operatively. Evaluation of polyethylene wear demonstrated that median penetration measurements were significantly greater in the conventional compared to the HXPLE liner cohorts at 1 year through 5 years follow-up (p<0.003). At 5 years, conventional liners showed 0.38 ± 0.05mm vertical wear whereas HXLPE liners showed 0.08 ± 0.02mm (p<0.003). Evaluation of the femoral stems demonstrated that the rate of subsidence was highest in the first 6 months (0.09mm/yr), with no other detectable motion through 5 years. Two outlying patients had significantly higher stem subsidence values at 6 months (0.7 mm and 1.0mm). One stem stabilised without further subsidence after 6 months (0.7mm), and the other stem stabilised at 1 year (1.5mm). Neither patient has clinical evidence of loosening. Evaluation of acetabular shells demonstrated less median vertical translation in tantalum than titanium shells at each time-point except at 3-years follow-up, however due to large standard errors, there was no significant difference between the two designs (p>0.05). These large standard errors were predominantly caused by two outliers, neither of which had clinical evidence of loosening. Discussion/Conclusion. In this RSA study of young THR patients, cementless tapered femoral stems, highly crosslinked polyethylene liners, and tantalum or titanium acetabular shells all demonstrated excellent performance through 5 years follow-up. Highly crosslinked polyethylene liners demonstrated significantly less wear than conventional liners. The femoral stem showed excellent stability through 5 years, with no clinical or radiologic episodes of failure. The small amount of micromotion seen is less than that previously reported for similar tapered, cementless stems and approaches the accuracy of RSA (0.05mm). Both acetabular shells demonstrated excellent stability with minimal micromotion at 5 years without significant differences in migration. All patients demonstrated significant clinical improvement in pain and function and additional RSA evaluation of these patients is planned


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 1 | Pages 143 - 147
1 Jan 1999
Aamodt A Kvistad KA Andersen E Lund-Larsen J Eine J Benum P Husby OS

CT and advanced computer-aided design techniques offer the means for designing customised femoral stems. Our aim was to determine the Hounsfield (HU) value of the bone at the corticocancellous interface, as part of the criteria for the design algorithm. We obtained transverse CT images from eight human cadaver femora. The proximal femoral canal was rasped until contact with dense cortical bone was achieved. The femora were cut into several sections corresponding to the slice positions of the CT images. After obtaining a computerised image of the anatomical sections using a scanner, the inner cortical contour was outlined and transferred to the corresponding CT image. The pixels beneath this contour represent the CT density of the bone remaining after surgical rasping. Contours were generated automatically at nine HU levels from 300 to 1100 and the mean distance between the transferred contour and each of the HU-generated contours was computed. The contour generated along the 600-HU pixels was closest to the inner cortical contour of the rasped femur and therefore 600 HU seem to be the CT density of the corticocancellous interface in the proximal part of cadaver femora. Generally, femoral bone with a CT density beyond 600 HU is not removable by conventional reamers. Thus, we recommend the 600 HU threshold as one of several criteria for the design of custom femoral implants from CT data


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 7 | Pages 1065 - 1071
1 Sep 2000
Martini F Lebherz C Mayer F Leichtle U Kremling E Sell S

Our aim was to determine the precision of the measurements of bone mineral density (BMD) by dual-energy x-ray absorptiometry in the proximal femur before and after implantation of an uncemented implant, with particular regard to the significance of retro- and prospective studies. We examined 60 patients to determine the difference in preoperative BMD between osteoarthritic and healthy hips. The results showed a preoperative BMD of the affected hip which was lower by a mean of 4% and by a maximum of 9% compared with the opposite side. In addition, measurements were made in the operated hip before and at ten days after operation to determine the effect of the implantation of an uncemented custom-made femoral stem. The mean increase in the BMD was 8% and the maximum was 24%. Previous retrospective studies have reported a marked loss of BMD on the operated side. The precision of double measurements using a special foot jig showed a modified coefficient of variation of 0.6% for the non-operated side in 15 patients and of 0.6% for the operated femur in 20 patients. The effect of rotation on the precision of the measurements after implantation of an uncemented femoral stem was determined in ten explanted femora and for the operated side in ten patients at 10° rotation and in 20 patients at 30° rotation. Rotation within 30° influenced the precision in studies in vivo and in vitro by a mean of 3% and in single cases in up to 60%. Precise prediction of the degree of loss of BMD is thus only possible in prospective cross-sectional measurements, since the effect of the difference in preoperative BMD, as well as the apparent increase in BMD after implantation of an uncemented stem, is not known from retrospective studies. The DEXA method is a reliable procedure for determining periprosthetic BMD when positioning and rotation are strictly controlled


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 105 - 105
1 Aug 2012
Downing M Hutchison J Ashcroft G
Full Access

Prosthesis migration and acetabular cup wear are useful short term measurement which may predict later implant outcome. However, the significance of the magnitude and pattern of the migration is very much dependent on the specific design studied. This study aimed to characterise patterns of migration by following four cemented femoral stem designs using Radiostereometry (RSA) within a prospective randomised longitudinal trial. 164 patients undergoing cemented femoral hip replacement for osteoarthritis were randomised to receive either an Exeter (Howmedica Stryker), Ultima Tapered Polished Stem (TPS) (Depuy), Ultima Straight Stem (USS) (Johnson and Johnson) or Elite Plus (Depuy) stem. Each subject received the OGEE PE cemented acetabular component (Depuy). RSA examinations were performed at 1 week and 6, 12, 18, 24 and 60 months post surgery. They were analysed using the UMRSA system (RSA Biomedical AB, Umea, Sweden), and our local geometric stem measurement software. 149 patients had RSA measurements available to 2 years, and 96 patients to 5 years. Differences were analysed using mixed linear modelling (SPSS). Median linear proximal cup wear rate reduced to a minimum of 0.02-0.06mm/year in year two. Between 2 and 5 years the wear rate increased, being significantly higher for the Elite. Cup migration was small but continuous. At 2 years it was median 0.3mm proximally, increasing to 0.5 mm at 5 years. Median rotations were less than 0.3 degrees. Proximal migration was positive and increasing at all time points for all stems. For the tapered polished designs, while the overall magnitude was significantly higher, the rate of migration significantly decreased, whereas for the other stem designs it did not. The TPS stem showed a tendency for posterior tilt which was significant compared to the other stems at 5 years. All stems tended to retroversion, with the USS significantly less than the others and the Elite showing and relative increase at 5 years. In summary migration patterns are characterised by the stem design, including where there were only small changes between designs. We are now testing measured migrations as predictors of outcome, and will continue to follow this group of patients to 10 years


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 6 | Pages 921 - 929
1 Aug 2001
Aamodt A Lund-Larsen J Eine J Andersen E Benum P Husby OS

We have compared the changes in the pattern of the principal strains in the proximal femur after insertion of eight uncemented anatomical stems and eight customised stems in human cadaver femora. During testing we aimed to reproduce the physiological loads on the proximal femur and to simulate single-leg stance and stair-climbing. The strains in the intact femora were measured and there were no significant differences in principal tensile and compressive strains in the left and right femora of each pair. The two types of femoral stem were then inserted randomly into the left or right femora and the cortical strains were again measured. Both induced significant stress shielding in the proximal part of the metaphysis, but the deviation from the physiological strains was most pronounced after insertion of the anatomical stems. The principal compressive strain at the calcar was reduced by 90% for the anatomical stems and 67% for the customised stems. Medially, at the level of the lesser trochanter, the corresponding figures were 59% and 21%. The anatomical stems induced more stress concentration on the anterior aspect of the femur than did the customised stems. They also increased the hoop strains in the proximomedial femur. Our study shows a consistently more physiological pattern of strain in the proximal femur after insertion of customised stems compared with standard, anatomical stems


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 8 | Pages 1182 - 1188
1 Nov 2000
Barker DS Wang AW Yeo MF Nawana NS Brumby SA Pearcy MJ Howie DW

We studied the effect of the surface finish of the stem on the transfer of load in the proximal femur in a sheep model of cemented hip arthroplasty. Strain-gauge analysis and corresponding finite-element (FE) analysis were performed to assess the effect of friction and creep at the cement-stem interface.

No difference was seen between the matt and polished stems. FE analysis showed that the effects of cement creep and friction at the stem-cement interface on femoral strain were small compared with the effect of inserting a cemented stem.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 8 | Pages 1115 - 1121
1 Aug 2007
Messick KJ Miller MA Damron LA Race A Clarke MT Mann KA

The role of vacuum mixing on the reduction of porosity and on the clinical performance of cemented total hip replacements remains uncertain. We have used paired femoral constructs prepared with either hand-mixed or vacuum-mixed cement in a cadaver model which simulated intra-operative conditions during cementing of the femoral component. After the cement had cured, the distribution of its porosity was determined, as was the strength of the cement-stem and cement-bone interfaces.

The overall fraction of the pore area was similar for both hand-mixed and vacuum-mixed cement (hand 6%; vacuum 5.7%; paired t-test, p = 0.187). The linear pore fractions at the interfaces were also similar for the two techniques. The pore number-density was much higher for the hand-mixed cement (paired t-test, p = 0.0013). The strength of the cement-stem interface was greater with the hand-mixed cement (paired t-test, p = 0.0005), while the strength of the cement-bone interface was not affected by the conditions of mixing (paired t-test, p = 0.275). The reduction in porosity with vacuum mixing did not affect the porosity of the mantle, but the distribution of the porosity can be affected by the technique of mixing used.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 77 - 77
11 Apr 2023
Nguyen K Torkan L Bryant T Wood G Ploeg H
Full Access

This study compared the pullout forces of the initial implantation and the “cement-in-cement” revision technique for short and standard-length (125 mm vs. 150 mm) Exeter. ®. V40 femoral stems used in total hip arthroplasty (THA). The idea that the pullout force for a double taper slip stem is relative to the force applied to the femur and that “cement-in-cement” revision provides the same reproduction of force. A total sample size of 15 femoral stems were tested (Short, n = 6 and Standard, n = 9). 3D printed fixtures for repeatable sample preparation were used to minimize variance during testing. To promote stem subsidence and to simulate an in vivo environment, the samples were placed in an incubator at 37°C at 100% humidity and experienced a constant compressive loading of 1335 N for 14 days. The samples underwent a displacement-controlled pullout test. After the initial pullout test, “cement-in-cement” revision will be performed and tested similar to the initial implantation to observe the efficacy of the revision technique. To compare the pullout forces between the two groups, a Kruskal-Wallis test using a significance level of 0.05 was conducted. The mean maximum pullout force for the short and standard-length femoral stems were 3939 ± 1178 N and 5078 ± 1168 N, respectively. The Kruskal-Wallis test determined no statistically significant difference between the two groups for the initial implantation (p = 0.13). The “cement-in-cement” revision pullout force will be conducted in future testing. This study demonstrated the potential use of short stem designs for THA as it provides similar levels of fixation as the standard-length femoral stem. The potential benefits for using a short stem design would be providing similar load transfer to the proximal femur, preserving proximal metaphyseal femoral bone in primary replacement, and reducing the invasiveness during revision


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 22 - 22
2 Jan 2024
García-Rey E Pérez-Barragans F Saldaña L
Full Access

Total hip arthroplasty (THA) outcome in patients with osteonecrosis of the femoral head ONFH) are excellent, however, there is controversy when compared with those in patients with osteoarthritis (OA). Reduced mineralization capacity of osteoblasts of the proximal femur in patients with ONFH could affect implant fixation. We asked if THA fixation in patients with ONFH is worse than in those with OA. We carried out a prospective comparative case (OA)-control (ONFH) study of patients undergoing THA at our hospital between 2017 and 2019. The minimum follow-up was 2 years. Inclusion criteria were patients with uncemented THA, younger than 70 years old, a Dorr femoral type C and idiopathic ONFH. We compared the clinical (Merlé D'Aubigné-Postel score) and radiological results related with implant positioning and fixation. Engh criteria and subsidence were assessed at the immediate postoperative, 12 weeks, 6 months, 12 months and yearly. Osteoblastic activity was determined by mineralization assay on primary cultures of osteoblasts isolated from trabecular bone samples collected from the intertrochanteric area obtained during surgery. Group 1 (ONFH) included 18 patients and group 2 (OA), 22. Average age was 55.9 years old in group 1 and 61.3 in group 2. (p=0.08). There were no differences related with sex, Dorr femoral type or femoral filling. The mean clinical outcome score was 17.1 in group 1 and 16.5 in group 2 (p=0.03). There were no cases of dislocation, infection, or revision surgery in this series. There were 5 cases (28%) of femoral stem subsidence greater than 3mm within 6 first months in group 1 and 1 case (4.5%) in group 2 (p=0.05). Although there were no significant differences related to clinical results, bone fixation was slower, and a greater subsidence was observed in patients with ONFH. Greater femoral stem subsidence was associated with a lower capacity for mineral nodule formation in cultured osteoblasts. The surgical technique could influence THA outcome in patients with reduced mineralization capacity of osteoblasts


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 73 - 73
1 Nov 2021
Camera A Tedino R Cattaneo G Capuzzo A Biggi S Tornago S
Full Access

Introduction and Objective. A proper restoration of hip biomechanics is fundamental to achieve satisfactory outcomes after total hip arthroplasty (THA). A global hip offset (GO) postoperatively reduction of more than 5 mm was known to impair hip functionality after THA. This study aimed to verify the restoration of the GO radiographic parameter after primary THA by the use of a cementless femoral stem available in three different offset options without length changing. Materials and Methods. From a consecutive series of 201 patients (201 hips) underwent primary cementless THA in our centre with a minimum 3-year follow up, 80 patients (80 hips) were available for complete radiographic evaluation for GO and limb length (LL) and clinical evaluation with Harris hip score (HHS). All patients received the same femoral stem with three different offset options (option A with – 5 mm offset, option B and option C with + 5 mm offset, constant for each sizes) without changing stem length. Results. Mean GO significantly increased by + 3 mm (P < 0.05) and mean LL significantly decreased by + 5 mm (P < 0.05) after surgery, meaning that postoperatively the limb length of the operated side increased by + 5 mm. HHS significantly improved from 56.3 points preoperatively to 95.8 postoperatively (P < 0.001). Offset option A was used in 1 hip (1%), B in 59 hips (74%) and C in 20 hips (25%). Conclusions. The femur is lateralized with a mean of + 5mm after surgery than, the native anatomy, whatever type of stem was used. Thus, the use of this 3-offset options femoral stem is effective in restoring the native biomechanical hip parameters as GO, even if 2 offset options were considered sufficient to restore GO


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 33 - 33
2 Jan 2024
Emonde C Reulbach M Evers P Behnsen H Nürnberger F Jakubowitz E Windhagen H
Full Access

According to the latest report from the German Arthroplasty Registry, aseptic loosening is the primary cause of implant failure following primary hip arthroplasty. Osteolysis of the proximal femur due to the stress-shielding of the bone by the implant causes loss of fixation of the proximal femoral stem, while the distal stem remains fixed. Removing a fixed stem is a challenging process. Current removal methods rely on manual tools such as chisels, burrs, osteotomes, drills and mills, which pose the risk of bone fracture and cortical perforation. Others such as ultrasound and laser, generate temperatures that could cause thermal injury to the surrounding tissues and bone. It is crucial to develop techniques that preserve the host bone, as its quality after implant removal affects the outcome of a revision surgery. A gentler removal method based on the transcutaneous heating of the implant by induction is proposed. By reaching the glass transition temperature (T. G. ) of the periprosthetic cement, the cement is expected to soften, enabling the implant to be gently pulled out. The in-vivo environment comprises body fluids and elevated temperatures, which deteriorate the inherent mechanical properties of bone cement, including its T. G. We aimed to investigate the effect of fluid absorption on the T. G. (ASTM E2716-09) and Vicat softening temperature (VST) (ISO 306) of Palacos R cement (Heraeus Medical GmbH) when dry and after storage in Ringer's solution for up to 8 weeks. Samples stored in Ringer's solution exhibited lower T. G. and VST than those stored in air. After 8 weeks, the T. G. decreased from 95.2°C to 81.5°C in the Ringer's group, while the VST decreased from 104.4°C to 91.9°C. These findings will be useful in the ultimate goal of this project which is to design an induction-based system for implant removal. Acknowledgements: Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – SFB/TRR-298-SIIRI – Project-ID 426335750


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 144 - 144
1 Nov 2021
García-Rey E Saldaña-Quero L Sedel L
Full Access

Introduction and Objective. Despite pure alumina have shown excellent long-term results in patients undergoing total hip arthroplasty (THA), alumina matrix composites (AMCs) composed of alumina and zirconium oxide are more commonly used. There are no comparative studies between these two different ceramics. We performed a retrospective case-control study to compare results and associated complications between AMC from two manufacturers and those with pure alumina from another manufacturer. Materials and Methods. 480 uncemented THAs with ceramic on ceramic (CoC) bearing surfaces (288 men and 192 women; mean age of 54.1 ± 12.4 years), were implanted from 2010 to 2015. Group 1: 281 THAs with pure alumina; Group 2A: 142 with AMC bearing in a trabecular titanium cup. Group 2B: 57 hips with AMC bearing with a porous-coated cup. Results. The mean follow-up was 7.3 years. There was one late infection in group 1, eight dislocations, three in group 1 (1.1%), three in group 2A (2.1%), all with a 36 mm femoral head, and two in group 2C (3.5%). Liner malseating was found in one hip in group 1, and in five hips in group 2C, of these, there were four liner fractures (7.0%). Four cups were revised for iliopsoas impingement (three in group 1 and one in group 2B). Two cups were revised for aseptic loosening, one in group 1 and one in group 2A, and four revised femoral stems in group 2A, three for subsidence and another for postoperative periprosthetic B. 2. fracture. The mean preoperative Harris Hip Score was 48.6 ± 3.3 in the whole series and 93.9 ± 7.2 at the end of follow-up. The survival rate of revision for any cause was 98.2% (95% Confidence Interval: 96.6–99.8) at ten years for group 1, 95.8% (95% CI: 92.1–99.5) for group 2A, and 91.1% (95% CI: 83.7–98.5) for group 2B (log-rank 0.030). Conclusions. Outcome of uncemented CoC THA in young patients was satisfactory at mid-term in all three groups. However, liner fractures were frequent in group 2B. All dislocated hips in group 2A had a 36 mm femoral head diameter, and revision due to any cause was less frequent in group 1. Pure alumina CoC THA can be used as a benchmark for comparison with newer CoC THAs


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 53 - 53
1 Apr 2017
Goubran A McHale S Steinlechner C
Full Access

Background. Aseptic loosening of cemented femoral stems results from migration of wear particles along the bone-cement interface, producing a foreign body reaction. After cement insertion, blood back pressure can disrupt the bone-cement interface, enabling this spread of wear particles. Our study investigates whether altering timing and speed of stem insertion can reduce this risk. Methods. We inserted mock “C-Stem” femoral components (De Puy-Synthes), using Smartset HV cement (De Puy-Synthes) into artificial femora, fitted with proximal and distal pressure transducers. Cement insertion began two, three or four minutes after mixing. Cement pressures were then allowed to settle for one minute and the stems were then inserted over durations of 25, 60 or 90 seconds. Results. Quicker insertion led to high peak pressures; however insertion over 90 seconds at 4 and 5 minutes achieved more sustained pressures above blood back pressure. Slower insertion particularly improved proximal pressurisation. Furthermore when the stem was inserted over 90 seconds at 5 minutes then the cement pressures remained high after full insertion of the stem. Conclusions. Commonly, femoral stems are inserted rapidly. Our study demonstrates that by inserting the femoral stem more slowly, cement pressure can be maintained above blood back pressure for longer. We believe that after slower stem insertion, the higher cement viscosity enables the surgeon to maintain cement pressure, via the stem, sufficient to resist blood back pressure without inadvertently over inserting the stem. This safe and simple modification of cementing technique generates higher and more sustained cement pressures. Level of evidence. 3. Disclosures. Depuy-Synthes kindly provided the equipment used in the study. None of the authors received any payment or other benefits


Abstract. Objective. To compare the periprosthetic fracture mechanics between a collared and collarless fully coated cementless femoral stem in a composite femur. Methods. Two groups of six composite femurs (‘Osteoporotic femur’, SawBones, WA USA) were implanted with either a collared (collared group) or collarless (collarless group) cementless femoral stem which was otherwise identical by a single experienced surgeon. Periprosthetic fractures of the femur were simulated using a previously published technique. High speed video recording was used to identify fracture mechanism. Fracture torque and angular displacement were measured and rotational work and system stiffness were estimated for each trial. Results were compared between collared and collarless group and the comparison was evaluated against previously published work using fresh frozen femurs and the same protocol. Results. In composite femur testing median fracture torque (IQR) was greater with a collared versus collarless implant (48.41 [42.60 to 50.27] Nm versus 45.12 [39.13 to 48.09] Nm, p= 0.4). Median rotational displacement (IQR) was less with a collared versus collarless implant (0.29 [0.27 to 0.31] radians versus 0.33 [0.32 to 0.34] radians, p= 0.07). Estimated rotary work was similar between groups (5.76 [4.92 to 6.64] J versus 5.21 [4.25 to 6.04] J, p= 0.4). Torsional stiffness was greater with a collared versus collarless implant (158.36 [152.61, 163.54] Nm per radian versus 138.79 [122.53, 140.59] Nm per radian, p= 0.5). Collarless stems were seen to move independently of the femur and fracture patterns originated at the calcar. Conclusions. Testing with composite femurs using an established protocol produced similar results to previously published studies using human femurs, but the difference between collared and collarless stems was smaller. The internal homogenous foam material in composite femurs does not accurately represent the heterogeneous cancellous bone which supports a femoral stem in vivo and may lead to overestimation of implant stability. Declaration of Interest. (a) fully declare any financial or other potential conflict of interest


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 2 - 2
1 Dec 2020
Carbone V Palazzin A Bisotti M Bursi R Emili L
Full Access

Regulatory bodies impose stringent pre-market controls to certify the safety and compatibility of medical devices. However, internationally recognized standard tests may be expensive, time consuming and challenging for orthopedic implants because of many possible sizes and configurations. In addition, cost and time of standard testing may endanger the feasibility of custom-device production obtained through innovative manufacturing technologies like 3d printing. Modeling and simulation (M&S) tools could be used by manufactures and at point-of-care to improve design confidence and reliability, accelerate design cycles and processes, and optimize the amount of physical testing to be conducted. We propose an integrated cloud platform to perform in silico testing for orthopedic devices, assessing mechanical safety and electromagnetic compatibility, in line with recognized standards and regulatory guidelines. The . InSilicoTrials.com. platform contains two M&S tools for orthopedic devices: CONSELF and NuMRis. CONSELF (. conself.com. ) uses Salome-Meca 2017 to compute static implant stresses and strains on metallic orthopedic devices, following the requirements and considerations of ASTM F2996-20 for non-modular hip femoral stems and ASTM F3161-16 for total knee femoral components. Simulation results were consistent with those reported in the two standards. NuMRis (. numris.insilicomri.com. ) uses ANSYS HFSS and ANSYS Mechanical 2019R3 to compute radio-frequency energy absorption and induced heating in 1.5T and 3T MRI coils, replicating the ASTM F2182-19e2 Standard Test Method. Simulation results were validated against in vitro measurements. The integrated M&S workflow on the cloud platform allows the user to upload the 3D geometry and the material properties of the orthopedic device to be tested, automatically set up the standard testing scenarios, run simulations and process outcome, with the option to summarize the results in accordance with current FDA guidance on M&S reporting. The easy-to-use interfaces of InSilicoTrials tools run through commercial web browsers, requiring no specific expertise in computational methods or additional on-premise software and hardware resources, since all simulations are run remotely on cloud infrastructure. The integrated cloud platform can be used to evaluate design alternatives, test multi-configuration devices, perform multi-objective design optimization and identify worst-case scenarios within a family of implant sizes, or to assess the safety and compatibility of custom-made orthopedic devices. InSilicoTrials.com. is the first cloud platform offering a collection of M&S tools to perform in silico standard testing for orthopedic devices. The proposed tools allow to assess mechanical safety and electromagnetic compatibility before prototyping, preventing risks and criticalities for the patient, and helping manufacturers and point-of-care to accelerate time and reduce costs during the device development. The proposed platform promotes the broader adoption of digital evidence in preclinical trials, supporting the device submission process and pre-market regulatory evaluation, and helping secure regulatory approval