Advertisement for orthosearch.org.uk
Results 1 - 13 of 13
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 114 - 114
1 Nov 2021
Başal Ö Ozmen O Deliormanli AM
Full Access

Introduction and Objective. Bone is a tissue which continually regenerates and also having the ability to heal after injuries however, healing of large defects requires intensive surgical treatment. Bioactive glasses are unique materials that can be utilized in both bone and skin regeneration and repair. They are degradable in physiological fluids and have osteoconductive, osteoinductive and osteostimulative properties. Osteoinductive growth factors such as Bone Morphogenetic Proteins (BMP), Vascular Endothelial Growth Factor (VEGF), Epidermal Growth Factor (EGF), Transforming Growth Factor (TGF) are well known to stimulate new bone formation and regeneration. Unfortunately, the synthesis of these factors is not cost- effective and, the broad application of growth factors is limited by their poor stability in the scaffolds. Instead, it is wise to incorporate osteoinductive nanomaterials such as graphene nanoplatelets into the structures of synthetic scaffolds. In this study, borate-based 13-93B3 bioactive glass scaffolds were prepared by polymer foam replication method and they were coated with graphene-containing poly (ε-caprolactone) layer to support the bone repair and regeneration. Materials and Methods. Effects of graphene concentration (1, 3, 5, 10 wt%) on the healing of rat segmental femur defects were investigated in vivo using male Sprague–Dawley rats. Fabricated porous bioactive glass scaffolds were coated by graphene- containing polycaprolactone solution using dip coating method. The prepared 0, 1, 3, 5 and 10 wt% graphene nanoparticle-containing PCL-coated composite scaffolds were designated as BG, 1G-P-BG, 3G-P-BG, 5G-P-BG and 10G-P-BG, for each group (n: 4) respectively. Histopathological and immunohistochemical (bone morphogenetic protein, BMP-2; smooth muscle actin, SMA and alkaline phosphatase, ALP) examinations were made after 4 and 8 weeks of implantation. Results. Results showed that after 8-weeks of implantation both cartilage and bone formation were observed in all animal groups. After 4 and 8 weeks of implantation the both osteoblast and osteoclast numbers were significantly higher in the group 4 compared to the control group. Bone formation was significant starting from 1 wt% graphene-coated bioactive glass implanted group and highest amount of bone formation was obtained in group containing 10 wt% graphene (p<0.001). Newly formed vessels expressed this marker and increased vascularization was observed in 8- weeks period compared to the 4-weeks period. In addition, an increase in new vessel formation were observed in graphene-coated scaffold implanted groups compared to the control group. While cartilage tissue was observed in control group, bone formation percentages were significant in graphene-coated scaffold implanted groups. Highest amount of bone formation occurred in group 4 (10 % wt G-C). Conclusions. Additionally, the presence of graphene nanoplatelets enhanced the BMP-2, SMA and ALP levels compared to the bare bioactive glass scaffolds. It was concluded that pristine graphene-coated bioactive glass scaffolds improve osteointegration and bone formation in rat femur defect when compared to bare bioglass scaffolds


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 30 - 30
14 Nov 2024
Schröder M Gens L Arens D Giger N Gehweiler D Nehrbass D Zderic I Zeiter S Stoddart M Wehrle E
Full Access

Introduction. Immunomodulation represents a novel strategy to improve bone healing in combination with low doses of bone morphogenetic growth factors like BMP-2. This study aims to investigate the effect and timing of monoclonal anti-IL-1ß antibody administration with 1μg BMP-2 on bone healing over 14 weeks in a rat femur segmental defect model. Method. 2 mm femoral defects were created in 22-27 weeks-old female Fischer F344 rats, internally fixed with a plate (animal license: GR/19/2022) using established protocols for analgesia and anesthesia. Animals (n=4/group) received either a collagen sponge, a collagen sponge+1μg BMP-2 (InductOs, Medtronic) or a collagen sponge+1μg BMP-2 with a monoclonal anti-IL-1ß antibody (BioXCell, 10 mg/ml), administered intravenously under anesthesia every third day until day 15, from day 0 or 3. In vivo micro-CT was performed after surgery and at 2, 3, 4, 6, 8, 10 and 14-weeks post-OP. Mechanical properties of the operated femurs were assessed by 4-point bending (Instron5866) and compared to contralateral femurs (one-way ANOVA, GraphPad Prism8). Histopathological analysis was performed semi-quantitatively on Giemsa-Eosin-stained sections (Olympus BX63) using a six-grade severity grading scale. Result. Operated femurs with BMP-2 reached an average stiffness of 91±37% of contralateral femurs, femurs in IL-1ß groups 105±11% (day 0) and 111±12% (day 3). Administration of anti-IL-1ß+1μg BMP-2 led to faster cortical bridging (3/4 femurs bridged by week 4 for day 0, 4/4 for day 3) than 1μg BMP-2 alone (0/4 by week 4). Micro-CT results confirmed histopathological evaluation, as collagen sponge alone led to non-union, complete bicortical bridging was observed for 3/4 femurs in the BMP-2 group and for 4/4 femurs in the IL-1β groups after 14 weeks. Conclusion. Anti-IL-1ß had a beneficial effect on late fracture healing with faster cortical bridging and new bone formation than 1μg BMP-2 alone. Acknowledgments. AO foundation. We thank Andrea Furter, Alisa Hangartner and Thomas Krüger for technical support


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 6 | Pages 832 - 836
1 Jun 2006
Barker R Takahashi T Toms A Gregson P Kuiper JH

The use of impaction bone grafting during revision arthroplasty of the hip in the presence of cortical defects has a high risk of post-operative fracture. Our laboratory study addressed the effect of extramedullary augmentation and length of femoral stem on the initial stability of the prosthesis and the risk of fracture.

Cortical defects in plastic femora were repaired using either surgical mesh without extramedullary augmentation, mesh with a strut graft or mesh with a plate. After bone impaction, standard or long-stem Exeter prostheses were inserted, which were tested by cyclical loading while measuring defect strain and migration of the stem.

Compared with standard stems without extramedullary augmentation, defect strains were 31% lower with longer stems, 43% lower with a plate and 50% lower with a strut graft. Combining extramedullary augmentation with a long stem showed little additional benefit (p = 0.67). The type of repair did not affect the initial stability. Our results support the use of impaction bone grafting and extramedullary augmentation of diaphyseal defects after mesh containment.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 55 - 55
2 Jan 2024
Wehrle E
Full Access

Despite the major advances in osteosynthesis after trauma, there remains a small proportion of patients (<10%) who exhibit delayed healing and/or eventual progression to non-union. While known risk factors exist, e.g. advanced age or diabetes, the exact molecular mechanism underlying the impaired healing is largely unknown and identifying which specific patient will develop healing complications is still not possible in clinical practice. The talk will cover our novel multimodal approaches in small animals, which have the potential to precisely capture and understand biological changes during fracture healing on an individual basis. Via combining emerging omics technologies with our recently developed femur defect loading equipment in mice, we provide a platform to precisely link mechanical and molecular analyses during fracture healing


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 132 - 132
2 Jan 2024
Dias D Fritsche-Guenther R Chan W Ellinghaus A Duda G Kirwan J Poh P
Full Access

The ability of the body to constantly maintain metabolism homeostasis while fulling the heightened energy and macromolecule demand is crucial to ensure successful tissue healing outcomes. Studies investigating the local metabolic environment during healing are scarce to date. Here, using Type 2 Diabetes (T2D) as a study model, we investigate the impact of metabolism dysregulation on scaffold-guided large-volume bone regeneration. Our study treated wild-type or T2D rats with 5 mm critical-sized femoral defects with 3D-printed polycaprolactone (PCL) scaffolds with 70% porosity. Metabolomics was leveraged for a holistic view of metabolism alteration as healing progress and correlated to regenerated bone tissue volume and quality assessed using micro-computed tomography (µ-CT), histology, and immunohistology. Semi-targeted metabolomics analysis indicated dysregulation in the glycolysis and TCA cycle – the main energy production pathways, in T2D compared to healthy animals. The abundance of metabolites substrates, i.e., amino acids – for protein/ extracellular matrix synthesis was also affected in T2D. Tissue-level metabolites observations aligned with morphological observation with less newly formed bone observed in T2D than wild-type rats. This study enlightens the metabolism landscape during scaffold-guided large-volume bone regeneration in wild-type vs. T2D to further guide the personalization of the scaffold to drive successful regeneration


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 130 - 130
4 Apr 2023
Shi Y Deganello D Xia Z
Full Access

Bone defects require implantable graft substitutes, especially porous and biodegradable biomaterial for tissue regeneration. The aim of this study was to fabricate and assess a 3D-printed biodegradable hydroxyapatite/calcium carbonate scaffold for bone regeneration. Materials and methods:. A 3D-printed biodegradable biomaterial containing calcium phosphate and aragonite (calcium carbonate) was fabricated using a Bioplotter. The physicochemical properties of the material were characterised. The materials were assessed in vitro for cytotoxicity and ostegenic potential and in vivo in rat intercondylar Φ3mm bone defect model for 3 months and Φ5mm of mini pig femoral bone defects for 6 months. The results showed that the materials contained hydroxyapatite and calcium carbonate, with the compression strength of 2.49± 0.2 MPa, pore size of 300.00 ± 41mm, and porosity of 40.±3%. The hydroxyapatite/aragonite was not cytotoxic and it promoted osteogenic differentiation of human umbilical cord matrix mesenchymal stem cells in vitro. After implantation, the bone defects were healed in the treatment group whereas the defect of controlled group with gelatin sponge implantation remained non-union. hydroxyapatite/aragonite fully integrated with host bone tissue and bridged the defects in 2 months, and significant biodegradation was followed by host new bone formation. After implantation into Φ5mm femoral defects in mini pigs hydroxyapatite/aragonite were completed degraded in 6 months and fully replaced by host bone formation, which matched the healing and degradation of porcine allogenic bone graft. In conclusion, hydroxyapatite/aragonite is a suitable new scaffold for bone regeneration. The calcium carbonate in the materials may have played an important role in osteogenesis and material biodegradation


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 10 - 10
2 Jan 2024
Tian X Vater C Raina DB Findeisen L Matuszewski L Tägil M Lidgren L Schaser K Disch A Zwingenberger S
Full Access

Although bone morphogenetic protein 2 (BMP-2) has been FDA-approved for spinal fusion for decades, its disadvantages of promoting osteoclast-based bone resorption and suboptimal carrier (absorbable collagen sponge) leading to premature release of the protein limit its clinical applications. Our recent study showed an excellent effect on bone regeneration when BMP-2 and zoledronic acid (ZA) were co-delivered based on a calcium sulphate/hydroxyapatite (CaS/HA) scaffold in a rat critical-size femoral defect model. Therefore, the aim of this study was to evaluate whether local application of BMP-2 and ZA released from a CaS/HA scaffold is favorable for spinal fusion. We hypothesized that CaS/HA mediated controlled co-delivery of rhBMP-2 and ZA could show an improved effect in spinal fusion over BMP-2 alone. 120, 8-week-old male Wistar rats (protocol no. 25-5131/474/38) were randomly divided into six groups in this study (CaS/HA, CaS/HA + BMP-2, CaS/HA + systemic ZA, CaS/HA + local ZA, CaS/HA + BMP-2 + systemic ZA, CaS/HA + BMP-2 + local ZA). A posterolateral spinal fusion at L4 to L5 was performed bilaterally by implanting group-dependent scaffolds. At 3 weeks and 6 weeks, 10 animals per group were euthanized for µCT, histological staining, or mechanical testing. µCT and histological results showed that the CaS/HA + BMP-2 + local ZA group significantly promoted bone regeneration than other treated groups. Biomechanical testing showed breaking force in CaS/HA + BMP + local ZA group was significantly higher than other groups at 6 weeks. In conclusion, the CaS/HA-based biomaterial functionalized with bioactive molecules rhBMP-2 and ZA enhanced bone formation and concomitant spinal fusion outcome. Acknowledgements: Many thanks to Ulrike Heide, Anna-Maria Placht (assistance with surgeries) as well as Suzanne Manthey & Annett Wenke (histology)


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 99 - 99
1 Mar 2021
Procter P Hulsart-Billstrom G Insley G Pujari-Palmer M Wenner D Engqvist H Larsson S
Full Access

An ex vivo biomechanical test model for evaluating a novel bone adhesive has been developed. However, at day 1 in the in vivo pilot, high blood flow forced the study to halt until the solution presented here was developed. The profuse bleeding after bone core removal affected the bond strength and was reflected in the lower mean peak value 1.53N. After considering several options, we were successful in sealing the source of blood flow by pressing adhesive into place after bone core removal. After the initial adhesive had cured additional adhesive was used to secure the bone core in place. The animals were sacrificed after 24 h and a tensile test was undertaken on the bone core to failure. The ex vivo study produced mean peak tensile loads of 7.63N SD 2.39N (n=8, 4 rats 8 femurs). Whilst the mean peak tensile loads in the day 1 in vivo pilot were significantly lower 1.53N SD1.57 (n=8, 6 rats 8 femurs − 4 used for other tests). The subsequent layered adhesive bone cores showed a mean peak tensile force of 6.79N SD =3.13 (n=8, 4 rats 8 femurs). 7/8 failed at the bone to glue interface. This is the first successful demonstration of bonding bone in vivo for this class of adhesives. The development of a double adhesive method of fixing a bone core in the distal femur enabled mean peak tensile forces to be achieved in vivo at 24 hours that were comparable with the ex vivo results previously demonstrated. This method supports application in further animal series and over longer time scales. Biomaterials researchers that intend to use gel or paste like preparations in distal femur defects in the rat should be aware of the risks of biomaterial displacement by local blood flow


Bone & Joint Research
Vol. 2, Issue 2 | Pages 41 - 50
1 Feb 2013
Cottrell JA Keshav V Mitchell A O’Connor JP

Objectives. Recent studies have shown that modulating inflammation-related lipid signalling after a bone fracture can accelerate healing in animal models. Specifically, decreasing 5-lipoxygenase (5-LO) activity during fracture healing increases cyclooxygenase-2 (COX-2) expression in the fracture callus, accelerates chondrogenesis and decreases healing time. In this study, we test the hypothesis that 5-LO inhibition will increase direct osteogenesis. Methods. Bilateral, unicortical femoral defects were used in rats to measure the effects of local 5-LO inhibition on direct osteogenesis. The defect sites were filled with a polycaprolactone (PCL) scaffold containing 5-LO inhibitor (A-79175) at three dose levels, scaffold with drug carrier, or scaffold only. Drug release was assessed in vitro. Osteogenesis was assessed by micro-CT and histology at two endpoints of ten and 30 days. Results. Using micro-CT, we found that A-79175, a 5-LO inhibitor, increased bone formation in an apparent dose-related manner. Conclusions. These results indicate that 5-LO inhibition could be used therapeutically to enhance treatments that require the direct formation of bone


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 73 - 73
1 Nov 2018
Ribeiro C Correia D Rodrigues I Guardão L Guimarães S Soares R Lanceros-Méndez S
Full Access

The potential of piezoelectric biomaterials for bone tissue engineering is demonstrated. This work proves that the use of piezoelectric poly(vinylidene fluoride) (PVDF), able to provide electrical stimuli upon mechanical solicitation to the growing bone cells, enhances the bone regeneration in vivo. Poled and non-poled PVDF films, with and without macroscopic piezoelectric response, respectively and randomly oriented piezoelectric electrospun fiber mats have been used as substitutes for bone to test their osteogenic properties in Wistar rats by analyzing new bone formation in 3 mm bilateral femur defects in vivo. After 4 weeks, the qualification of the regenerated bone was performed according the H&E staining. Defect implanted with poled PVDF films demonstrated significantly more defect closure and bone remodeling, showing the large potential of piezoelectric biomaterials for bone repair, as well as for other electromechanical responsive tissues such as muscle and tendon


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 48 - 48
1 Nov 2018
Devine D Hayes J Kotsougiani D Evans C
Full Access

Bone has a remarkable capacity to heal. However, in some instances the amount of bone which is needed to heal exceeds its healing capacity. Due to reported issues with current treatments there is continued research into alternative approaches with a view to producing an off the shelf alternative to the gold standard autologous bone transplants. The current investigated the use of a chitosan/hydroxyapatite scaffold, which was used to covalently bone morphogenetic protein and vascular endothelial growth factor using a UV crosslinking process. Results indicate that the incorporation of hydroxyapatite increased the mechanical properties of the scaffold compared to chitosan alone. Furthermore, crosslinking was confirmed using swelling studies and FTIR analysis. Elisa indicated that physiological doses of BMP were released after 10 days while in vitro testing did not indicate a cytotoxic response to the scaffold. In vivo testing in a rat femoral defect model indicated the efficacy of the treatment with scaffolds containing BMP and VEGF in combination resulting in more bone in the defect compared to the scaffold alone 8 weeks post-surgery


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 187 - 187
1 Jul 2014
Moore S Saidel G Tate MK
Full Access

Summary Statement. A coupled finite element - analytical model is presented to predict and to elucidate a clinical healing scenario where bone regenerates in a critical-sized femoral defect, bounded by periosteum or a periosteum substitute implant and stabilised via an intramedullary nail. Introduction. Bone regeneration and maintenance processes are intrinsically linked to mechanical environment. However, the cellular and subcellular mechanisms of mechanically-modulated bone (re-) generation are not fully understood. Recent studies with periosteum osteoprogenitor cells exhibit their mechanosensitivity in vitro and in situ. In addtion, while a variety of growth factors are implicated in bone healing processes, bone morphogenetic protein-2 (BMP-2) is recognised to be involved in all stages of bone regeneration. Furthermore, periosteal injuries heal predominantly via endochondral ossification mechanisms. With this background in mind, the current study aims to understand the role of mechanical environment on BMP-2 production and periosteally-mediated bone regeneration. The one-stage bone transport model [1] provides a clinically relevant experimental platform on which to model the mechanobiological process of periosteum-mediated bone regeneration in a critical-sized defect. Here we develop a model framework to study the cellular-, extracellular- and mechanically-modulated process of defect infilling, governed by the mechanically-modulated production of BMP-2 by osteoprogenitor cells located in the periosteum. Methods. Material properties of the healing callus and periosteum contribute to the strain stimulus sensed by osteoprogenitor cells therein. Using a mechanical finite element model, periosteal surface strains are first predicted as a function of callus properties. Strains are then input to a mechanistic mathematical model, where mechanical regulation of BMP-2 production mediates rates of cellular proliferation, differentiation and extracellular matrix (ECM) production, to predict healing outcomes. A parametric approach enables the spatial and temporal prediction of tissue regeneration via endochondral ossification. Predictions are compared with experimental, micro-computed tomographic and histologic, measures of cartilage and mineralised bone tissue regenerates. Model Predictions in Light of Experimental Case Studies: A validated baseline model predicts defect healing via cellular egression, extracellular matrix production and endochondral ossification, using parameters optimised to mimic experimental outcome measures at initial and final stages of healing. To elucidate which predictive model paramenters result in the intrinsic differences in experimental outcomes between defects bounded by either periosteum in situ or a periosteum substitute implant, model parameters are then varied by orders of magnitude to determine which factors exert dominant influence on achievement of experimentally relevant ECM area outcomes. Considering the complete set of parameters relevant to healing, the rate of osteoprogenitor to osteoblast differentiation, as well as rates of chondrocyte and osteoblast proliferation must be reduced and ECM production by chondrocytes must be increased from baseline, to achieve healing outcomes analogous to those observed in experiments. Discussion/Conclusion. The novel model framework presented here integrates a mechanistic feedback system, based on the mechanosensitivity of periosteal osteoprogenitor cells, which allows for modeling and prediction of tissue regeneration on multiple length and time scales


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 8 | Pages 1110 - 1119
1 Aug 2009
Hepp P Osterhoff G Niederhagen M Marquass B Aigner T Bader A Josten C Schulz R

Perilesional changes of chronic focal osteochondral defects were assessed in the knees of 23 sheep. An osteochondral defect was created in the main load-bearing region of the medial condyle of the knees in a controlled, standardised manner. The perilesional cartilage was evaluated macroscopically and biopsies were taken at the time of production of the defect (T0), during a second operation one month later (T1), and after killing animals at three (T3; n = 8), four (T4; n = 8), and seven (T7; n = 8) months. All the samples were histologically assessed by the International Cartilage Repair Society grading system and Mankin histological scores. Biopsies were taken from human patients (n = 10) with chronic articular cartilage lesions and compared with the ovine specimens. The ovine perilesional cartilage presented with macroscopic and histological signs of degeneration. At T1 the International Cartilage Repair Society ‘Subchondral Bone’ score decreased from a mean of 3.0 (sd 0) to a mean of 1.9 (sd 0.3) and the ‘Matrix’ score from a mean of 3.0 (sd 0) to a mean of 2.5 (sd 0.5). This progressed further at T3, with the International Cartilage Repair Society ‘Surface’ grading, the ‘Matrix’ grading, ‘Cell Distribution’ and ‘Cell Viability’ grading further decreasing and the Mankin score rising from a mean of 1.3 (sd 1.4) to a mean of 5.1 (sd 1.6). Human biopsies achieved Mankin grading of a mean of 4.2 (sd 1.6) and were comparable with the ovine histology at T1 and T3.

The perilesional cartilage in the animal model became chronic at one month and its histological appearance may be considered comparable with that seen in human osteochondral defects after trauma.