An innovative Kirschner (K-) wire point was developed and compared in fresh pig femora in terms of drilling efficiency and temperature
The periclavicular space is a conduit for the brachial plexus and subclavian-axillary vascular system. Changes in its shape/form generated by alteration in the anatomy of its bounding structures, e.g. clavicle malunion, cause distortion of the containing structures, particularly during arm motion, leading to syndromes of thoracic outlet stenosis etc., or alterations of scapular posture with potential reduction in shoulder function. Aim of this study was developing an in vitro methodology for systematic and repeatable measurements of the clinically poorly characterized periclavicular space during arm motion using CT-imaging and computer-aided 3D-methodologies. A radiolucent frame, mountable to the CT-table, was constructed to fix an upper torso in an upright position with the shoulder joint lying in the isocentre. The centrally osteotomized humerus is fixed to a semi-circular bracket mounted centrally at the end of the frame. All arm movements (ante-/retroversion, abduction/
Osteosynthesis of high-energy metaphyseal proximal tibia fractures is still challenging, especially in patients with severe soft tissue injuries and/or short stature. Although the use of external fixators is the traditional treatment of choice for open comminuted fractures, patients' acceptance is low due to the high profile and therefore the physical burden of the devices. Recently, clinical case reports have shown that supercutaneous locked plating used as definite external fixation could be an efficient alternative. Therefore, the aim of this study was to evaluate the effect of implant configuration on stability and interfragmentary motions of unstable proximal tibia fractures fixed by means of externalized locked plating. Based on a right tibia CT scan of a 48 years-old male donor, a finite element model of an unstable proximal tibia fracture was developed to compare the stability of one internal and two different externalized plate fixations. A 2-cm osteotomy gap, located 5 cm distally to the articular surface and replicating an AO/OTA 41-C2.2 fracture, was virtually fixed with a medial stainless steel LISS-DF plate. Three implant configurations (IC) with different plate
Osteoarthritis, the most common degenerative joint disease, significantly impairs life quality and labor capability of patients. Synovial inflammation, initiated by HMGB1 (High mobility group box 1)-induced activation of macrophage, precedes other pathological changes. As an upstream regulator of NF-κB (nuclear factor-kappa B) and MAPK (mitogen-activated protein kinase) signaling pathway, TAK1 (TGF-β activated kinase 1) participates in macrophage activation, while its function in osteoarthritis remains unveiled. This study aims to investigate the role of TAK1 in the pathogenesis of osteoarthritis via both in vitro and in vivo approaches. We performed immunohistochemical staining for TAK1 in synovial tissue, both in osteoarthritis patients and healthy control. Besides, immunofluorescence staining for F4/80 as macrophage marker and TAK1 were conducted as well. TAK1 expression was examined in RAW264.7 macrophages stimulated by HMGB1 via qPCR (Quantitative polymerase chain reaction) and Western blotting, and the effect of TAK1 inhibitor (5z-7 oxozeaenol) on TNF-α production was evaluated by immunofluorescence staining. Further, we explored the influence of intra-articular shRNA (short hairpin RNA) targeting TAK1 on collagenase-induced osteoarthritis in mice. Immunohistochemical staining confirmed significant
Prompt mobilisation after the Fracture neck of femur surgery is one of the important key performance index (‘KPI caterpillar charts’ 2021) affecting the overall functional outcome and mortality. Better control of peri-operative blood pressure and minimal alteration of renal profile as a result of surgery and anaesthesia may have an implication on early post-operative mobilisation. Aim was to evaluate perioperative blood pressure measurements (duration of fall of systolic BP below the critical level of 90mmHg) and effect on the post-operative renal profile with the newer short acting spinal anaesthetic agent (prilocaine and chlorprocaine) used alongside the commonly used regional nerve block. 20 patients were randomly selected who were given the newer short acting spinal anaesthetic agent along with a regional nerve block between May 2019 and February 2020. Anaesthetic charts were reviewed from all patients for data collection. The assessment criteria for perioperative hypotension: Duration of systolic blood pressure less than 90 mm of Hg and change of pre and post operative renal functions. Only one patient had a significant drop in systolic BP less than 90mmHg (25 minutes). 3 other patients had a momentary fall of systolic BP of less than 5 minutes. None of the above patients had mortality and had negligible change in pre and post op renal function. Only one patient in this cohort had
Introduction and Objective. The Cartilage Oligomeric Matrix Protein (COMP) is a glycoprotein that is elevated in patients with osteoarthritis. The
Introduction and Objective. Current cartilage repair strategies lack adequate tissue integration capacity and often present mechanical failure at the graft-to-host tissue junction. The design of multilayered osteochondral tissue engineering (TE) constructs is an attractive approach to overcome these problems. However, calcium ion-release from resorbable bone-replacement materials was suggested to compromise chondrogenic differentiation of adjacent cartilage tissue and it is unclear whether articular chondrocytes (AC) or mesenchymal stroma cells (MSC) are more sensitive to such conditions. Aim of the study was to compare how elevated calcium levels affect cartilage matrix production during re-differentiation of AC versus chondrogenic differentiation of MSC. The results of this study will help to identify the ideal cell source for growth of neocartilage adjacent to a calcified bone replacement material for design of multilayered osteochondral TE approaches. Materials and Methods. Expanded human AC and MSC (6–12 donors per group) were seeded in collagen type I/III scaffolds and cultured under standard chondrogenic conditions at control (1.8mM) or elevated (8.0mM) CaCl2 for 35 days. Proteoglycan and collagen production were assessed via radiolabel-incorporation, ELISA, qPCR and Western blotting. Differences between groups or cell types were calculated using the non-parametric Wilcoxon or Mann-Whitney U test, respectively, with p < 0.05 considered significant. Results. Elevated calcium significantly reduced GAG synthesis (63% of control, p=0.04) and chondrogenic marker expression of AC, lowering the GAG/DNA content (47% of control, p=0.004) and collagen type II deposition (24% of control, p=0.05) of neocartilage compared to control conditions. Opposite, at elevated calcium levels MSC-derived chondrocytes significantly increased GAG synthesis (130% of control, p=0.02) and collagen type II content (160% of control, p=0.03) of cartilage compared to control tissue. Chondrogenic and hypertrophic marker expression was insensitive to calcium levels in MSC-derived chondrocytes. As a result, maturation under elevated calcium allowed for a significantly higher GAG/DNA content in MSC-derived samples compared to AC constructs, although under control conditions both groups developed similarly. Conclusions. AC and MSC showed an opposite reaction to
Introduction and Objective. Several in vitro studies have shed light on the osteogenic and chondrogenic potential of graphene and its derivatives. Now it is possible to combine the different biomaterial properties of graphene and 3D printing scaffolds produced by tissue engineering for cartilage repair. Owing to the limited repair capacity of articular cartilage and bone, it is essential to develop tissue-engineered scaffolds for patients suffering from joint disease and trauma. However, chondral lesions cannot be considered independently of the underlying bone tissue. Both the microcirculation and the mechanical support provided with bone tissue must be repaired. One of the distinctive features that distinguish graphene from other nanomaterials is that it can have an inductive effect on both bone and cartilage tissue. In this study, the effect of different concentrations of graphene on the in vivo performance of single-layer poly-ε-caprolactone based-scaffolds is examined. Our hypothesis is that graphene nanoplatelet- containing, robocast PCL scaffolds can be an effective treatment option for large osteochondral defect treatment. For this purpose, different proportions of graphene- containing (1%,3%,5%,10 wt%) PCL scaffolds were studied in a 5mm diameter osteochondral defect model created in the rabbit knee. Materials and Methods. In the study graphene-containing (1, 3, 5, 10 wt%), porous and oriented poly-ε-caprolactone-based scaffolds were prepared by robocasting method to use in the regeneration of large osteochondral defects. Methods: The scaffolds were implanted into the full-thickness osteochondral defect in a rabbit model to evaluate the regeneration of defect in vivo. For this purpose, twenty female New Zealand white rabbits were used and they were euthanized at 4 and 8 weeks of implantation. The reparative osteochondral tissues were harvested from rabbit distal femurs and then processed for gross appearance assessment, radiographic imaging, histopathological and immunohistochemical examinations. Results. Results revealed that, graphene- containing graft materials caused significant amelioration at the defect areas. Graphene-containing graft materials improved the fibrous, chondroid and osseous tissue regeneration compared to the control group. The expressions of bone morphogenetic protein-2 (BMP-2), collagen-1 (col-1), vascular endothelial growth factor (VEGF) and alkaline phosphatase (ALP) expressions were more prominent in graphene- containing PCL implanted groups. Results also revealed that the ameliorative effect of graphene increased by the
Introduction. Being challenging, multifragmentary proximal tibial fractures in patients with severe soft tissue injuries and/or short stature can be treated using externalized locked plating. A recent finite element study, investigating the fixation stability of plated unstable tibial fractures with 2-mm, 22-mm and 32-mm plate
Introduction. Osteoarthritis (OA) of the knee, a prevalently degenerative joint disorder provoked by articular cartilage loss, accounts for the leading cause of total knee arthroplasty. Autophagy is an indispensable intracellular event that maintains chondrocyte survival and metabolism. MicroRNAs are non-coding small RNAs participating in tissue morphogenesis, remodeling, and homeostasis. This study was undertaken to investigate the effect of microRNA-128 (miR-128) knockdown on the development of OA knees. Materials/Methods. Knee joints in rats were subjected to anterior cruciate ligament transection (ACLT) for inducing OA. Articular cartilage, synovium, and subchondral bone microarchitecture were assessed by OARSI scoring system, histomorphometry, and μCT imaging. Chondrocyte autophagy in terms of the expression of autophagic markers Atg4, Atg12, microtubule-associated protein 1 light chain 3 (LC3), and autophagosome formation was verified. Expression of microRNA, mRNA and signaling transduction were quantified with in situ hybridization, RT- quantitative PCR, and immunoblotting. Results. Chondrocytes in the affected knees showed weak expression of autophagic markers Atg4, Atg12, and LC3-II abundances in conjunction with significant increases in OARSI scores and a 2.5-fold
Thermostability is a key property in determining the suitability of local delivery of antibiotics in the treatment of orthopaedic infections. Herein, we aimed to assess the thermal stability and antibacterial activity of ciprofloxacin, ceftriaxone, gentamycine and vancomycine in high temperature conditions. Using a standardized E-test method, minimally inhibited concentration of each antibiotic substance against Staphylococcus aureus cultures were determined. The solutions of antimicrobial drugs ciprofloxacin 2 mg/ml, ceftriaxone 200 mg/ml, gentamycine 40 mg/ml and vancomycine 200 mg/ml were diluted twofold in deionised water. Acquired solutions were divided into three aliquots. The first aliquot was held at 40°C for 30 min in a waterbath, the second and the third aliquots were exposed to 80 and 100°C for 30 min in hot-air sterilizer, respectively. The treated solutions were tested for residual activity against S. aureus using a standardized disk diffusion method. Mediums with untreated antibiotic solutions and S. aureus were used as control. Plates were incubated at 37°C, at which time zones of inhibition (ZoI) were measured to the nearest whole millimeter for 14 days. The investigation indicated that the temperature
Orthopedic implants containing biodegradable magnesium have been used for fracture repair with considerable efficacy; however, the underlying mechanisms by which these implants improve fracture healing remain elusive. Here we show the formation of abundant new bone at peripheral cortical sites after intramedullary implantation of a pin containing ultrapure magnesium into the intact distal femur in rats. This response was accompanied by substantial increases of neuronal calcitonin gene-related polypeptide-a (CGRP) in both the peripheral cortex of the femur and the ipsilateral dorsal root ganglia (DRG). Surgical removal of the periosteum, capsaicin denervation of sensory nerves or knockdown in vivo of the CGRP-receptor-encoding genes Calcrl or Ramp1 substantially reversed the magnesium-induced osteogenesis that we observed in this model. Overexpression of these genes, however, enhanced magnesium-induced osteogenesis. We further found that an
Summary Statement. In this study, massive rotator cuff tears were treated using an absorbable collagen-based patch or a non-absorbable synthetic patch. Results demonstrated the efficacy of the use of the synthetic prolene patch especially for elderly patients. Introduction. The treatment of massive rotator cuff tears presents a challenging problem in shoulder surgery. Traditional repair techniques are associated with high rupture rates due to excessive tension on the repair and the presence of degenerated tendon tissue. These factors have led to attempts to reconstruct the rotator cuff with grafts, using synthetic materials or biologic tissues. The purpose of this study was to compare the efficacy of the use of pericardium patch with the use of prolene patch in the repair of extensive rotator cuff tears. Materials & Methods. A retrospective series of 180 patients, 115 men and 65 women with a mean age of 66.8 years treated for a massive rotator cuff tear from 1997 to 2008 is reported. The inclusion criteria were: patients symptomatic with pain, deficit of
Introduction. Excessive bone mass and microarchitecture loss exacerbate the risk of osteoporotic fracture, a skeletal disorder attributable to disability in the elder. Excessive marrow adipose development at the expense of osteoblastic bone acquisition is a prominent feature of aging-induced osteoporotic skeletons. MicroRNA-29a (miR-29a) modulates osteogenic and adipogenic commitment of mesenchymal progenitor cells. The purposes of this study were to test if miR-29a overexpression changed bone mass or microstructure in aged skeletal tissues. Materials/Methods. Transgenic mice that overexpressed miR-29a in osteoblasts driven by osteocalcin promoter (miR-29aTg) were generated. Littermates without carrying construct of interest were used as wild-type mice (WT). 3- and 12-month-old mice were designated into young and aged groups respectively. Bone mineral density (BMD), cortical, trabecular microarchitecture and morphometric profiles were quantified with ultrahigh resolution μCT system. Primary bone-marrow mesenchymal stem cells (BMMSCs) were incubated in osteogenic and adipogenic conditions. Expressions of osteogenic and adipogenic marker were quantified with RT-PCR. Results. Skeletons in the aged WT group showed 65% decrease in BMD in association with 72% reduction in miR-29a expression and 2.3-fold
The biomechanics of the patellofemoral joint can become disturbed during total knee replacement by alterations induced by the position and shape of the different prosthetic components. The role of the patella and femoral trochlea has been well studied. We have examined the effect of anterior or posterior positioning of the tibial component on the mechanisms of patellofemoral contact in total knee replacement. The hypothesis was that placing the tibial component more posteriorly would reduce patellofemoral contact stress while providing a more efficient lever arm during extension of the knee. We studied five different positions of the tibial component using a six degrees of freedom dynamic knee simulator system based on the Oxford rig, while simulating an active knee squat under physiological loading conditions. The patellofemoral contact force decreased at a mean of 2.2% for every millimetre of posterior translation of the tibial component. Anterior positions of the tibial component were associated with
We studied 51 patients with osteo-articular tuberculosis who were divided into two groups. Group I comprised 31 newly-diagnosed patients who were given first-line antituberculous treatment consisting of isoniazid, rifampicin, ethambutol and pyrazinamide. Group II (non-responders) consisted of 20 patients with a history of clinical non-responsiveness to supervised uninterrupted antituberculous treatment for a minimum of three months or a recurrence of a previous lesion which on clinical observation had healed. No patient in either group was HIV-positive. Group II were treated with an immunomodulation regime of intradermal BCG, oral levamisole and intramuscular diphtheria and tetanus vaccines as an adjunct for eight weeks in addition to antituberculous treatment. We gave antituberculous treatment for a total of 12 to 18 months in both groups and they were followed up for a mean of 30.2 months (24 to 49). A series of 20 healthy blood donors served as a control group. Twenty-nine (93.6%) of the 31 patients in group I and 14 of the 20 (70%) in group II had a clinicoradiological healing response to treatment by five months. The CD4 cell count in both groups was depressed at the time of enrolment, with a greater degree of depression in the group-II patients (686 cells/mm. 3. (. sd. 261) and 545 cells/mm. 3. (. sd. 137), respectively; p <
0.05). After treatment for three months both groups showed significant
Summary Statement. Osteonecrosis of the femoral head (ONFH) is a multifactorial skeletal disorder. S100A9 represseses angiogenesis and vessel integrity in ONFH. It also may function as a marker of diagnosis in ONFH. Introduction. Osteonecrosis of the femoral head (ONFH) is a multifactorial skeletal disorder characterised by ischemic deterioration, bone marrow edema and eventually femoral head collapse and joint destruction. Several surgical, pharmaceutical and non-invasive biophysical modalities have been employed to alleviate this joint disorder. Our proteomic analysis showed that ONFH patients displayed increased expression of S100A9 protein when compared with healthy volunteers. This study is designed to evaluate the pathogenesis of S100A9 on the patients of ONFH. Patients & Methods. We collected 56 patients with ONFH including stage I, II, III and IV and 14 health volunteers. 20 ml of peripheral venous blood is drawn from each subject or prior to general anesthesia for hip arthroplasty. We compared the ELISA of S100A9, Osteocalcin, TRAP-5b, sVCAM-1. Immunohistochemistry of S100A9, vWF and VEGF are compared using femoral head harvested from late stages of ONFH and femoral neck fracture when received hip arthroplasty. In vitro angiogenic assay was performed by tube formation assay. Results. There were significant
Distal femur resection for correction of flexion contractures in total knee arthroplasty (TKA) can lead to joint line
Summary Statement. We present a simple and useful geometrical equation system to carry out the pre-operative planning and intra-operative assessments for total knee arthroplasty. These methods are extremely helpful in severely deformed lower limbs. Introduction. Total knee arthroplasty is a highly successful surgery for most of the patients with knee osteoarthritis. With commercial instruments and jigs, most surgeons can correct the deformity and provided satisfactory results. However, in cases with severe extra-articular deformity, the instruments may mislead surgeons in making judgment of the true mechanical axis. We developed a geometrical equation system for pre-operative planning and intra-operative measurement to perform correct bony cuts and achieve good post-operative axis. Patients & Methods. From 2008 to 2012, twenty-four patients with severe extra-articular deformities of low limbs underwent total knee arthroplasties for osteoarthritis. The deformities included malunion of femoral or tibial shafts with angulation, non-union of femoral supracondylar fractures, failed high tibia osteotomies, severe bowing of femurs, and other post-traumatic sequelae. The intra-medullary or extra-medullary guide devices were not possible to provide correct axis in these cases. For pre-operative planning, we analyzed the deformities on triple-film scanography and standing anterior-posterior and lateral X-ray films. The angles needed to be corrected in coronal and sagittal planes were measured. A geometrical equation system was applied to calculate the thickness of the proximal tibia cut and distal femoral cut. If the flexion contracture was presented, the degree of necessary
Background. Intervertebral disc cells exist in a challenging physiological environment. Disc degeneration occurs early in life implying that disc cells may no longer be able to maintain a functional tissue. We hypothesise that disc cells have a stress response different from most other cells because of the disc environment. We have compared the stress response of freshly isolated and cultured bovine nucleus pulposus (NP) cells with bovine dermal fibroblasts, representative of cells from a vascularised tissue. Methods. Freshly isolated and passaged bovine NP cells and dermal fibroblasts were cultured for 3 days then subjected to either thermal stress at 45°C for 1h followed by recovery times of 6, 24 and 48h or nutrient stress involving culture without serum for 6, 24 and 48 h. At each time point, cell number and viability were assessed and heat shock protein 70 (Hsp70) measured in cell lysates by an enzyme-linked immunosorbent assay. Results. In response to thermal stress, both freshly isolated and passaged dermal fibroblasts and also passaged NP cells showed a rapid