Advertisement for orthosearch.org.uk
Results 1 - 11 of 11
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 35 - 35
1 Nov 2021
Hartland A Islam R Teoh K Rashid M
Full Access

Introduction and Objective. There remains much debate regarding the optimal method for surgical management of patients with long head of biceps pathology. The aim of this study was to compare the outcomes of tenotomy versus tenodesis. Materials and Methods. This systematic review and meta-analysis was registered on PROSPERO (ref: CRD42020198658). Electronic databases searched included EMBASE, Medline, PsycINFO, and Cochrane Library. Randomized controlled trials (RCTs) comparing tenotomy versus tenodesis were included. Risk of bias within studies was assessed using the Cochrane risk of bias v2.0 tool and the Jadad score. The primary outcome included patient reported functional outcome measures pooled using standardized mean difference (SMD) and a random effects model. Secondary outcome measures included visual analogue scale (VAS), rate of cosmetic deformity (Popeye sign), range of motion, operative time, and elbow flexion strength. Results. 751 patients from 10 RCTs demonstrated (369 tenotomy vs 382 tenodesis) were included in the meta-analysis. Pooled analysis of all PROMs data demonstrated comparable outcomes between tenotomy vs tenodesis (SMD 0.17 95% CI −0.02 to 0.36, p=0.09). Sensitivity analysis comparing RCTs involving patients with and without an intact rotator cuff did not change the primary outcome. Secondary outcomes including VAS, shoulder external rotation, and elbow flexion strength did not reveal any significant difference. Tenodesis resulted in a lower rate of Popeye deformity (OR 0.27 95% CI 0.16 to 0.45, p<0.00001). Conclusions. Aside from a lower rate of cosmetic deformity, tenodesis yielded no measurable significant benefit to tenotomy for addressing pathology in the long head of biceps. This finding was irrespective of the whether the rotator cuff was intact


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 26 - 26
1 Jan 2017
Kuenzler M Ihn H Akeda M McGarry M Zumstein M Lee T
Full Access

Insufficiency of the lateral collateral ligamentous complex causes posterolateral rotatory instability (PLRI). During reconstruction surgery the joint capsule is repaired, but its biomechanical influence on elbow stability has not been described. We hypothesized that capsular repair reduces ROM and varus angle after reconstruction of the lateral collateral complex. Six fresh frozen cadaveric elbow specimens were used. Varus laxity in supination, pronation and neutral forearm rotation with 1 Nm load and forearm rotaitonal range of motion (ROM) with 0.3 Nm torque were measured using a Microscribe 3DLX digitizing system (Revware Inc, Raleigh, NC). Each specimen was tested under four different conditions: Intact, Complete Tear with LUCL, RCL and capsule tear, LUCL/RCL reconstruction + capsule repair and LUCL/RCL reconstruction only. Reconstruction was performed according to the docking technique (Jones, JSES, 2013) and the capsule was repaired with mattress sutures. Each condition was tested in 30°, 60° and 90° elbow flexion. A two-way ANOVA with Tukey's post-hoc test was used to detect statistical differences between the conditions. Total ROM of the forearm significantly increased in all flexion angles from intact to Complete tear (p<0.001). ROM was restored to normal in 30° and 60° elbow flexion in both reconstruction conditions (p>0.05). LUCL/RCL Reconstruction + capsule repair in 90° elbow flexion was associated with a significantly lower ROM compared to intact (p=0.0003) and reconstruction without capsule repair (p=0.015). Varus angle increased significantly from intact to complete tear (p<0.0001) and restored to normal in both reconstruction conditions (p>0.05) in 30° and 60° elbow flexion. In contrast varus angle was significantly lower in 90° elbow flexion in both reconstruction conditions compared to intact (both p<0.0001). Reconstruction of the lateral collateral complex restores elbow stability, ROM and varus laxity independent of capsular repair. Over tightening of the elbow joint occurred in 90° elbow flexion, which was aggravated by capsular repair. Over all capsular repair can be performed without negatively affecting elbow joint mobility


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 3 - 3
1 Dec 2021
Giddins G Giddins H
Full Access

Abstract. Objectives. Falling studies have been conducted in controlled environments but not in field studies for ethical reasons; this limits the validity and applicability of previous studies. We performed field studies on existing YouTube © videos of skateboarders falling. The aims were to measure the wrist angle at impact on videos of real unprotected falls and to study the dynamics of the upper limbs when falling. Methods. Youtube © videos of skateboarders falling were studied assessing the direction of the fall, the positions of both upper limbs and especially the wrists on impact. This study would not be ethical by other means. Results. In study one (the more quantitative study) there were 48 men and 50 falls. The mean elbow flexion was 300 (range 00 to 800) and the mean maximal wrist extension was 800 (range 500 to 1100). The secondary wrist extended less or the same in > 90%. The second wrist only one (of 31) extended > 900 which should minimise the risk of toppling. Falls onto only one wrist gave significantly greater maximal wrist extension. In the second more qualitative study we observed the “upper limb falling reflex” where the response to falling is for the upper limb(s) to align with the direction of falling of the body with the elbow mostly but not fully extended. Initially the wrists extend c. 400–500 with the fingers held mildly flexed. Immediately before impact the fingers hyper-extend with some compensatory wrist flexion to c. 300. The fingertips impact the ground first followed by the hand. Conclusion. These studies confirm wrist extension at impact around 800 but the wrist(s) may hyper-extend risking toppling. Falls on both wrists minimise the risk of toppling. The “upper limb falling reflex” is defined; it is a rapid dynamic response leading to the fingers impacting the ground first on falling. Declaration of Interest. (a) fully declare any financial or other potential conflict of interest


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVIII | Pages 11 - 11
1 Jun 2012
Brown I Pillai A Hems T
Full Access

Our unit has pursued a policy of using donor nerves from the same limb for grafting. Nerves which have already been affected by the primary injury are selected where possible, thus avoiding any new sensory deficit. Methods. 36 of the 41 brachial plexus repairs were available for outcome data collected prospectively over 2 years. Over a nine year period, donor nerves used for the 41 brachial plexus repairs included the lateral cutaneous nerve of the forearm, superficial radial, medial cutaneous of the forearm, ulnar and sural nerves. Patients were grouped into having injured nerve grafts only (A), injured and uninjured nerve grafts (B) and uninjured nerve grafts. The repaired brachial plexus nerves were assessed by measuring the MRC grading of the power of movement of the muscle innervated by that nerve (i.e. elbow flexion for musculocutaneous nerve). These were graded as good (MRC grading 3 or better), fair (MRC grade 1 or 2), or poor (MRC 0). Results. The greatest success for nerve grafting was elbow flexion with good results in 22 out of 27 assessments. Using Mann-Whitney test, Group A had significantly better results (p=0.025) than group C. However, ignoring the poorer results of shoulder abduction there was no significant difference between all 3 groups of patients. Conclusion. Using injured nerve grafts taken distal to the lesion in the brachial plexus is as effective as using nerve material from an uninjured limb


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 30 - 30
1 Jan 2017
Kuenzler M Akeda M Ihn H McGarry M Zumstein M Lee T
Full Access

Posterolateral rotatory instability (PLRI) is the most common type of elbow instability. It is caused by an insufficiency of the lateral ligamentous complex, which consists mainly of the radial collateral ligament (RCL) and the lateral ulnar collateral ligament (LUCL). Investigate the influence of serial sectioning of the lateral ligamentous complex on elbow stability in a cadaveric model of PLRI. Kinematics of six fresh frozen cadaveric elbow specimens were measured by digitizing anatomical marks with a Microscribe 3DLX digitizing system (Revware Inc, Raleigh, NC). Each specimen was tested under four conditions: Intact, LUCL tear, LUCL and RCL tear, and complete Tear (LUCL, RCL and capsule tear). Each specimen was tested in 30°, 60° and 90° elbow flexion angles. Varus- laxity was measured in supination, pronation, and neutral forearm rotation positions and total forearm rotation was measured with 0.3 Nm of torque. Statistical significant differences between the conditions were detected using a two-way ANOVA with Tukey's post-hoc test. The radial head dislocated in all specimens in LUCL and RCL tear and Comp but not in LUCL tear. Total forearm ROM did not increase form intact to LUCL tear (p>0.05) but significantly increased in LUCL and RCL tear (p=0.0002) and complete tear (p<0.0001) in all flexion angles. Additionally, ROM in LUCL tear significantly differed from LUCL and RCL tear and complete tear (p=0.0027 and p=0.0002). A similar trend was seen with the varus angle. While there was a significant difference when the intact condition was compared to both the LUCLand RCL tear and complete tear conditions (p<0.0001 and p<0.0001), there was no difference between the intact and LUCL tear conditions. LUCL tear alone is not sufficient to cause instability and increase ROM and varus angle, meanwhile the increase of ROM and varus angle with additional capsular tear was not significant compared to LUCL and RCL tear. The increase of ROM after LUCL and RCL tear is an unknown symptom of PLRI


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 10 - 10
1 Apr 2017
Tan Z Ng Y Yew A Poh C Koh J Morrey B Sen H
Full Access

Introduction. The epicondylar axis of the elbow is a surface anatomical approximation of the true flexion-extension (F-E) axis used in the application of an external fixator/elbow arthroplasty. We hypothesise that the epicondylar axis coincides with the true F-E axis in terms of both angular displacement and position (ie. offset). This suggests that it can serve as a good landmark in total dynamic external fixator application and elbow arthroplasty. Methods. Three-dimensional elbow models were obtained through manual segmentation and reconstruction from 142±40 slices of CT scans per elbow in 15 cadeveric specimens. Epicondylar axis was defined to be the axis through the 2 epicondyles manually identified on the elbow models. F-E axis was defined to be the normal of a circle fitted on 20 points identified on the trochlear groove. The long axis of the elbow was identified through a line fit through the center of the distal humerus on several slices along the elbow CT. Angle between the long axis and epicondylar axis was measured. Angular deviation of the epicondylar axis and the F-E axis was calculated in reference to the long axis. All axes were projected onto the orthogonal planes on the elbow CTs and all measurements were repeated. Angular differences in the axial, saggital and coronal planes are described in internal/external rotation, flexion/extension and valgus/varus respectively. Offset in the axial and coronal planes are described in the following directions respectively: proximal/distal and anterior/posterior respectively. Comparisons between angles were performed using student's t-test. Results. Angle between the long axis and the epicondylar axis in our study (85.9±5.30) was not significantly different when compared to an existing study (87.3±2.80) (p=0.327). The epicondylar axis deviates from the true F-E axis by 1.9±4.50 (p=0.523) in flexion, 2.1±3.40 (p=0.442) varus, and 0.5±2.70 (p=0.851) in external rotation with an overall angular deviation of 2.2±4.80 (p=0.204). There was no statistical significance difference in the angle deviations mentioned. The offset between the epicondylar axis and the F-E axis was 15.6±3.4 mm anterior and 9.4±2.9 mm distal with an overall offset of 17.6±2.5 mm. Discussion. Our study demonstrated small and statistically insignificant angular difference between the epicondylar axis and the F-E axis. However, offset between the axes exists and may be clinically significant. When the epicondylar axis is used as an approximation to the natural F-E axis, this offset may introduce a moment on elbow flexion resulting in additional strain on the elbow collateral ligaments and dynamic external fixators. Implications of this as well as ligament balancing and implant stress-strain patterns in elbow arthroplasty merit further research with potential modification of technique and jigs. Significance. Although the angular difference between between the epicondylar and F-E axes was not statistically significant, an offset between the axes exist. Further research is required to elucidate its impact and the need for modification on elbow implants and external fixators


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_31 | Pages 66 - 66
1 Aug 2013
Bell S Brown M Hems T
Full Access

Current knowledge regarding upper limb myotomes is based on historic papers. Recent advances in magnetic resonance imaging (MRI) and surgical exploration with intraoperative nerve stimulation now allow accurate identification of nerve root injuries in the brachial plexus. The aim of this study is to identify the myotome values of the upper limb associated with defined supraclvicular brachial plexus injuries. 57 patients with partial supraclavicular brachial plexus injuries were identified from the Scottish brachial plexus database. The average age was 28 years and most injuries secondary to motor cycle accidents or stabbings. The operative and MRI findings for each patient were checked to establish the root injuries and the muscle powers of the upper limb documented. The main patterns of injuries identified involved (C5,6), (C5,6,7), (C5,6,7,8) and (C8, T1). C5, 6 injuries were associated with loss of shoulder abduction, external rotation and elbow flexion. In 30% of the 16 cases showed some biceps action from the C7 root. C5,6,7 injuries showed a similar pattern of weakness with the additional loss of flexor carpi radialis and weakness but not total paralysis of triceps in 85% of cases. C5,6,7,8 injuries were characterised by loss of pectoralis major, lattisimus dorsi, triceps, wrist extension, finger extension and as well as weakness of the ulnar intrinsic muscles. We identified weakness of the flexor digitorum profundus to the ulnar sided digits in 83% of cases. T1 has a major input to innervation of flexors of the radial digits and thumb, as well as intrinsics. This is the largest study of myotome values in patients with surgically or radiologically confirmed injuries in the literature and presents information for general orthopaedic surgeons dealing with trauma patients for the differentiation of different patterns of brachial plexus injuries. In addition we have identified new anatomical relationships not previously described in upper limb myotomes


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 273 - 273
1 Jul 2014
Alizadehkhaiyat O Vishwanathan K Frostick S
Full Access

Summary Statement. Discovery system produced effective functional improvement in both primary and revision total elbow replacement. The incidence of major complications was in an acceptable range. Introduction. The search for the ideal elbow prosthesis continues as instability and loosening remain the prime reasons for total elbow replacement (TER) failure. The Discovery Elbow System (Biomet) is one of the latest generations of linked prosthesis and has been used in UK since 2003. We report outcome of TER using this system. Methods. A total of 100 TERs (75 primary, 25 revisions) were performed between 2003 and 2010. The main primary underlying pathologies for TER were advanced rheumatoid arthritis (N=58), osteoarthritis (N=35), acute fractures (N=7). There were 60 female and 40 male patients with an average age of 62 years. The outcome assessment included pain, patient satisfaction, Liverpool Elbow Score (LES), range of movement, and imaging during a mean follow-up period of 48.5 months. Major complications are also reported. Results. For the whole patient group (primary + revision), the LES was significantly (p<0.001) improved from 3.79+/−1.71 to 6.36+/−1.85There were significant improvements in elbow flexion from 100°+/−24 to 118°+17, supination from 38°+/−26 to 50°+/−25 and pronation from 48°+/−22 to 61°+/−21. Mean improvement in flexion-extension and pronation-supination arc was 20° and 25°, respectively. 64% of cases were completely pain-free and at the final follow-up (compared to 7% preoperatively). Only 6% of patients scored “Not Satisfied” at the final follow-up. LES improvement was significantly higher in the primary TER compared to revision TER (p<0.05). Imaging reviewed for 60 cases showed loosening in 4% of patients. Other main complications included deep infection (N=2), ulnar neuropathy (N=3), pre-prosthetic fracture (N=2), and prosthetic failure (N=1). Discussion. TER using the Discovery Elbow System is an effective arthroplasty in terms of functional improvement, pain relief and range of motion in both primary and revision patients. TER resulted in no/mild pain in 78% of cases. Patients undergoing Acclaim, Souter-Strathclyde, GSB III, and Coonrad-Morrey TER have been reported to have no/mild pain in 64%, 67%, 50–92% and 60–100% of cases, respectively. A 20° improvement in flexion-extension arc is comparable to that of Acclaim (23°), Souter-Strathclyde (15°), GSBIII (19–33°), and Coonrad-Morrey (17–26°) TER. An improvement of 25° in pronation-supination arc in our series is also comparable to that of 21–28° reported the Coonrad-Morrey and 27–33° for Discovery prostheses. An infection rate of 2% is lower than several other reports for GSB III TER (7–11%) and Coonrad-Morrey (6–8%). The incidence of persistent ulnar neuropathy (3%) was lower compared to GSBIII TER (11–14%), Coonrad-Morrey (12–26%), and Acclaim (8%)


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 2 | Pages 261 - 266
1 Feb 2005
Földhazy Z Arndt A Milgrom C Finestone A Ekenman I

Strains applied to bone can stimulate its development and adaptation. High strains and rates of strain are thought to be osteogenic, but the specific dose response relationship is not known. In vivo human strain measurements have been performed in the tibia to try to identify optimal bone strengthening exercises for this bone, but no measurements have been performed in the distal radial metaphysis, the most frequent site of osteoporotic fractures. Using a strain gauged bone staple, in vivo dorsal metaphyseal radial strains and rates of strain were measured in ten female patients during activities of daily living, standard exercises and falls on extended hands. Push-ups and falling resulted in the largest compression strains (median 1345 to 3146 με, equivalent to a 0.1345% to 0.3146% length change) and falling exercises in the largest strain rates (18 582 to 45 954 με/s). On the basis of their high strain and/or strain rates these or variations of these exercises may be appropriate for distal radial metaphyseal bone strengthening.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 3 | Pages 413 - 416
1 Mar 2007
van Riet RP van Glabbeek F de Weerdt W Oemar J Bortier H

We undertook a study on eight arms from fresh cadavers to define the clinical usefulness of the lesser sigmoid notch as a landmark when reconstructing the length of the neck of the radius in replacement of the head with a prosthesis. The head was resected and its height measured, along with several control measurements. This was compared with in situ measurements from the stump of the neck to the proximal edge of the lesser sigmoid notch of the ulna. All the measurements were performed three times by three observers acting independently.

The results were highly reproducible with intra- and interclass correlations of > 0.99. The mean difference between the measurement on the excised head and the distance from the stump of the neck and the lesser sigmoid notch was −0.02 mm (−1.24 to +0.97). This difference was not statistically significant (p = 0.78).

The proximal edge of the lesser sigmoid notch provides a reliable landmark for positioning a replacement of the radial head and may have clinical application.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 1 | Pages 103 - 106
1 Jan 2008
Kettler M Tingart MJ Lunger J Kuhn V

Operative fixation is the treatment of choice for a rupture of the distal tendon of biceps. A variety of techniques have been described including transosseous sutures and suture anchors. The poor quality of the bone of the radial tuberosity might affect the load to failure of the tendon repair in early rehabilitation.

The aim of this study was to determine the loads to failure of different techniques of fixation and to investigate their association with the bone mineral density of the radial tuberosity.

Peripheral quantitative computed tomography was carried out to measure the trabecular and cortical bone mineral density of the radial tuberosity in 40 cadaver specimens. The loads to failure in four different techniques of fixation were determined.

The Endobutton-based method showed the highest failure load at 270 N (sd 22) (p < 0.05). The mean failure load of the transosseous suture technique was 210 N (sd 66) and that of the TwinFix-QuickT 5.0 mm was 57 N (sd 22), significantly lower than those of all other repairs (p < 0.05). No significant correlation was seen between bone mineral density and loads to failure.

The transosseous technique is an easy and cost-saving procedure for fixation of the distal biceps tendon. TwinFix-QuickT 5.0 mm had significantly lower failure loads, which might affect early rehabilitation, particularly in older patients.