Advertisement for orthosearch.org.uk
Results 1 - 20 of 198
Results per page:
Bone & Joint Open
Vol. 5, Issue 11 | Pages 984 - 991
6 Nov 2024
Molloy T Gompels B McDonnell S

Aims. This Delphi study assessed the challenges of diagnosing soft-tissue knee injuries (STKIs) in acute settings among orthopaedic healthcare stakeholders. Methods. This modified e-Delphi study consisted of three rounds and involved 32 orthopaedic healthcare stakeholders, including physiotherapists, emergency nurse practitioners, sports medicine physicians, radiologists, orthopaedic registrars, and orthopaedic consultants. The perceived importance of diagnostic components relevant to STKIs included patient and external risk factors, clinical signs and symptoms, special clinical tests, and diagnostic imaging methods. Each round required scoring and ranking various items on a ten-point Likert scale. The items were refined as each round progressed. The study produced rankings of perceived importance across the various diagnostic components. Results. In Round 1, the study revealed widespread variability in stakeholder opinions on diagnostic components of STKIs. Round 2 identified patterns in the perceived importance of specific items within each diagnostic component. Round 3 produced rankings of perceived item importance within each diagnostic component. Noteworthy findings include the challenges associated with accurate and readily available diagnostic methods in acute care settings, the consistent acknowledgment of the importance of adopting a patient-centred approach to diagnosis, and the transition from divergent to convergent opinions between Rounds 2 and 3. Conclusion. This study highlights the potential for a paradigm shift in acute STKI diagnosis, where variability in the understanding of STKI diagnostic components may be addressed by establishing a uniform, evidence-based framework for evaluating these injuries. Cite this article: Bone Jt Open 2024;5(11):984–991


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 6 | Pages 781 - 785
1 Jun 2005
Temmerman OPP Raijmakers PGHM Berkhof J Hoekstra OS Teule GJJ Heyligers IC

In this meta-analysis we included 32 English-language articles published between January 1975 and June 2004 on the diagnostic performance of plain radiography, subtraction arthrography, nuclear arthrography and bone scintigraphy in detecting aseptic loosening of the femoral component, using criteria based on the Cochrane systematic review of screening and diagnostic tests.

The mean sensitivity and specificity were, respectively, 82% (95% confidence interval (CI) 76 to 87) and 81% (95% CI 73 to 87) for plain radiography and 85% (95% CI 75 to 91) and 83% (95% CI 75 to 89) for nuclear arthrography. Pooled sensitivity and specificity were, respectively, 86% (95% CI 74 to 93) and 85% (95% CI 77 to 91) for subtraction arthrography and 85% (95% CI 79 to 89) and 72% (95% CI 64 to 79) for bone scintigraphy. Although the diagnostic performance of the imaging techniques was not significantly different, plain radiography and bone scintigraphy are preferred for the assessment of a femoral component because of their efficacy and lower risk of patient morbidity.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 93 - 93
11 Apr 2023
de Angelis N Beaule P Speirs A
Full Access

Femoro-acetabular impingement involves a deformity of the hip joint and is associated with hip osteoarthritis. Although 15% of the asymptomatic population exhibits a deformity, it is not clear who will develop symptoms. Current diagnostic imaging measures have either low specificity or low sensitivity and do not consider the dynamic nature of impingement during daily activities. The goal of this study is to determine stresses in the cartilage, subchondral bone and labrum of normal and impinging hips during activities such as walking and sitting down. Quantitative CT scans were obtained of a healthy Control and a participant with a symptomatic femoral cam deformity (‘Bump’). 3D models of the hip were created from automatic segmentation of CT scans. Cartilage layers were added so the articular surface was the mid-line of the joint. Finite element meshes were generated in each region. Bone elastic modulus was assigned element-by-element, calculated from CT intensity converted to bone mineral density using a calibration phantom. Cartilage was modelled as poroelastic, E=0.467 MPa, v=0.167, and permeability 3×10. -16. m. 4. /N s. The pelvis was fixed while rotations and contact forces from Bergmann et al. (2001) were applied to the femur over one load cycle for walking and sitting in a chair. All analyses were performed in FEBio. High shear stresses were seen near the acetabular cartilage-labrum junction in the Bump model, up to 0.12 MPa for walking and were much higher than in the Control. Patient-specific modelling can be used to assess contact and tissue stresses during different activities to better understand the risk of degeneration in individuals, especially for activities that involve high hip flexion. The high stresses at the cartilage labrum interface could explain so-called bucket-handle tears of the labrum


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_12 | Pages 7 - 7
10 Jun 2024
Hill D Davis J
Full Access

Introduction. Tibial Pilon fractures are potentially limb threatening, yet standards of care are lacking from BOFAS and the BOA. The mantra of “span, scan, plan” describes staged management with external fixation to allow soft tissue resuscitation, followed by a planning CT-scan. Our aim was to evaluate how Tibial Pilon fractures are acutely managed. Methods. ENFORCE was a multi-centre retrospective observational study of the acute management of partial and complete articular Tibial Pilon fractures over a three-year period. Mechanism, imaging, fracture classification, time to fracture reduction and cast, and soft tissue damage control details were determined. Results. 656 patients (670 fractures) across 27 centres were reported. AO fracture classifications were: partial articular (n=294) and complete articular (n=376). Initial diagnostic imaging mobilities were: plain radiographs (n=602) and CT-scan (n=54), with all but 38 cases having a planning CT-scan. 526 fractures had a cast applied in the Emergency Department (91 before radiological diagnosis), with the times taken to obtain post cast imaging being: mean 2.7 hours, median 2.3 hours, range 28 mins – 14 hours). 35% (102/294) of partial articular and 57% (216/376) of complete articular (length unstable) fractures had an external fixator applied, all of which underwent a planning CT-scan. Definitive management consisted of: open reduction internal fixation (n=495), fine wire frame (n=86), spanning external fixator (n=25), intramedullary nail (n=25), other (n=18). Conclusion. The management of Tibial Pilon fractures is variable, with prolonged delays in obtaining post cast reduction radiographs, and just over half of length unstable complete articular fractures being managed with the gold standard “span, scan, plan” staged soft tissue resuscitation. A BOFAS endorsed BOAST (British Orthopaedic Association Standard for Trauma) for Tibial Pilon fractures is suggested for standardisation of the acute management of these potentially limb threatening injuries, together with setting them apart from more straightforward ankle fractures


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 15 - 15
4 Apr 2023
Luk J
Full Access

Many factors have been reported to affect the functional survival of OCA transplants, including chondrocyte viability at time of transplantation, rate and extent of allograft bone integration, transplantation techniques, and postoperative rehabilitation protocols and adherence. The objective of this study was to determine the optimal subchondral bone drilling technique by evaluating the effects of hole diameter on the material properties of OCAs while also considering total surface area for potential biologic benefits for cell and vascular ingrowth. Using allograft tissues that would be otherwise discarded in combination with deidentified diagnostic imaging (MRI and CT), a model of a large shell osteochondral allograft was recreated using LS-PrePost and FEBio based on clinically relevant elastic material properties for cortical bone, trabecular bone, cartilage, and hole ingrowth tissue. The 0.8 mesh size model consisted of 4 mm trabecular bone, 4 mm cortical bone, and 3 mm cartilage sections that summed to a cross-sectional area of 1600 mm2 (40 mm x 40 mm). Holes were modeled to be 4mm deep in relation to clinical practice where holes are drilled from the deep margin of subchondral trabecular bone to the cortical subchondral bone plate. To test the biomechanic variations between drill hole sizes, models with hole sizes pertinent to standard-of-care commercially available orthopaedic drill sizes of 1.1mm, 2.4 mm, or 4.0 mm holes were loaded across the top surface over a one second duration and evaluated for effective stress, effective strain, 1st principal strain, and 3rd principal strain in compressive conditions. Results measured effective stress and strain and 1st and 3rd principal strain increased with hole depth. The results of the present FEA modeling study indicate that the larger 4.0 mm diameter holes were associated with greater stresses and strains within OCA shell graft, which may render the allograft at higher risk for mechanical failure. Based on these initial results, the smaller diameter 2.4 mm and 1.1 mm holes will be further investigated to determine optimal number, configuration, and depth of subchondral drilling for OCA preparation for transplantation


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 5 - 5
1 Dec 2022
Lombardo MDM Mangiavini L Peretti GM
Full Access

Menisci are crucial structures for knee homeostasis: they provide increase of congruence between the articular surfaces of the distal femur and tibial plateau, bear loading, shock absorption, lubrication, and proprioception. After a meniscal lesion, the golden rule, now, is to save as much meniscus as possible: only the meniscus tissue which is identified as unrepairable should be excised and meniscal sutures find more and more indications. Several different methods have been proposed to improve meniscal healing. They include very basic techniques, such as needling, abrasion, trephination and gluing, or more complex methods, such as synovial flaps, meniscal wrapping, or the application of fibrin clots. Basic research of meniscal substitutes has also become very active in the last decades. The features needed for a meniscal scaffold are: promotion of cell migration, it should be biomimetic and biocompatible, it should resist forces applied and transmitted by the knee, it should slowly biodegrade and should be easy to handle and implant. Several materials have been tested, that can be divided into synthetic and biological. The first have the advantage to be manufactured with the desired shapes and sizes and with precise porosity dimension and biomechanical characteristics. To date, the most common polymers are polylactic acid (PGA); poly-(L)-lactic acid (PLLA); poly- (lactic-co-glycolic acid) (PLGA); polyurethane (PU); polyester carbon and polycaprolactone (PCL). The possible complications, more common in synthetic than natural polymers are poor cell adhesion and the possibility of developing a foreign body reaction or aseptic inflammation, leading to alter the joint architecture and consequently to worsen the functional outcomes. The biological materials that have been used over time are the periosteal tissue, the perichondrium, the small intestine submucosa (SIS), acellular porcine meniscal tissue, bacterial cellulose. Although these have a very high biocompatibility, some components are not suitable for tissue engineering as their conformation and mechanical properties cannot be modified. Collagen or proteoglycans are excellent candidates for meniscal engineering, as they maintain a high biocompatibility, they allow for the modification of the porosity texture and size and the adaptation to the patient meniscus shape. On the other hand, they have poor biomechanical characteristics and a more rapid degradation rate, compared to others, which could interfere with the complete replacement by the host tissue. An interesting alternative is represented by hydrogel scaffolds. Their semi-liquid nature allows for the generation of scaffolds with very precise geometries obtained from diagnostic images (i.e. MRI). Promising results have been reported with alginate and polyvinyl alcohol (PVA). Furthermore, hydrogel scaffolds can be enriched with growth factors, platelet-rich plasma (PRP) and Bone Marrow Aspirate Concentrate (BMAC). In recent years, several researchers have developed meniscal scaffolds combining different biomaterials, to optimize the mechanical and biological characteristics of each polymer. For example, biological polymers such as chitosan, collagen and gelatin allow for excellent cellular interactions, on the contrary synthetic polymers guarantee better biomechanical properties and greater reliability in the degradation time. Three-dimensional (3D) printing is a very interesting method for meniscus repair because it allows for a patient-specific customization of the scaffolds. The optimal scaffold should be characterized by many biophysical and biochemical properties as well as bioactivity to ensure an ECM-like microenvironment for cell survival and differentiation and restoration of the anatomical and mechanical properties of the native meniscus. The new technological advances in recent years, such as 3D bioprinting and mesenchymal stem cells management will probably lead to an acceleration in the design, development, and validation of new and effective meniscal substitutes


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 46 - 46
1 Dec 2022
de Vries G McDonald T Somayaji C
Full Access

Worldwide, most spine imaging is either “inappropriate” or “probably inappropriate”. The Choosing Wisely recommendation is “Do not perform imaging for lower back pain unless red flags are present.” There is currently no detailed breakdown of lower back pain diagnostic imaging performed in New Brunswick (NB) to inform future directions. A registry of spine imaging performed in NB from 2011-2019 inclusive (n=410,000) was transferred to the secure platform of the NB Institute for Data, Training and Research (NB-IRDT). The pseudonymized data included linkable institute identifiers derived from an obfuscated Medicare number, as well as information on type of imaging, location of imaging, and date of imaging. The transferred data did not include the radiology report or the test requisition. We included all lumbar, thoracic, and complete spine images. We excluded imaging related to the cervical spine, surgical or other procedures, out-of-province patients and imaging of patients under 19 years. We verified categories of X-ray, Computed Tomography (CT), and Magnetic Resonance Imaging (MRI). Red flags were identified by ICD-10 code-related criteria set out by the Canadian Institute for Health Information. We derived annual age- and sex-standardized rates of spine imaging per 100,000 population and examined regional variations in these rates in NB's two Regional Health Authorities (RHA-A and RHA-B). Age- and sex-standardized rates were derived for individuals with/without red flag conditions and by type of imaging. Healthcare utilization trends were reflected in hospital admissions and physician visits 2 years pre- and post-imaging. Rurality and socioeconomic status were derived using patients’ residences and income quintiles, respectively. Overall spine imaging rates in NB decreased between 2012 and 2019 by about 20% to 7,885 images per 100,000 people per year. This value may be higher than the Canadian average. Females had 23% higher average imaging rate than males. RHA-A had a 45% higher imaging rate than RHA-B. Imaging for red flag conditions accounted for about 20% of all imaging. X-rays imaging accounted for 67% and 75% of all imaging for RHA-A and RHA-B respectively. The proportions were 20% and 8% for CT and 13% and 17% for MRI. Two-year hospitalization rates and rates of physician visits were higher post-imaging. Females had higher age-standardized hospitalization and physician-visit rates, but the magnitude of increase was higher for males. Individuals with red flag conditions were associated with increased physician visits, regardless of the actual reason for the visit. Imaging rates were higher for rural than urban patients by about 26%. Individuals in the lowest income quintiles had higher imaging rates than those in the highest income quintiles. Physicians in RHA-A consistently ordered more images than their counterparts at RHA-B. We linked spine imaging data with population demographic data to look for variations in lumbar spine imaging patterns. In NB, as in other jurisdictions, imaging tests of the spine are occurring in large numbers. We determined that patterns of imaging far exceed the numbers expected for ‘red flag’ situations. Our findings will inform a focused approach in groups of interest. Implementing high value care recommendations pre-imaging ought to replace low-value routine imaging


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 3 - 3
1 Dec 2022
Leardini A Caravaggi P Ortolani M Durante S Belvedere C
Full Access

Among the advanced technology developed and tested for orthopaedic surgery, the Rizzoli (IOR) has a long experience on custom-made design and implant of devices for joint and bone replacements. This follows the recent advancements in additive manufacturing, which now allows to obtain products also in metal alloy by deposition of material layer-by-layer according to a digital model. The process starts from medical image, goes through anatomical modelling, prosthesis design, prototyping, and final production in 3D printers and in case post-production. These devices have demonstrated already to be accurate enough to address properly the specific needs and conditions of the patient and of his/her physician. These guarantee also minimum removal of the tissues, partial replacements, no size related issues, minimal invasiveness, limited instrumentation. The thorough preparation of the treatment results also in a considerable shortening of the surgical and of recovery time. The necessary additional efforts and costs of custom-made implants seem to be well balanced by these advantages and savings, which shall include the lower failures and revision surgery rates. This also allows thoughtful optimization of the component-to-bone interfaces, by advanced lattice structures, with topologies mimicking the trabecular bone, possibly to promote osteointegration and to prevent infection. IOR's experience comprises all sub-disciplines and anatomical areas, here mentioned in historical order. Originally, several systems of Patient-Specific instrumentation have been exploited in total knee and total ankle replacements. A few massive osteoarticular reconstructions in the shank and foot for severe bone fractures were performed, starting from mirroring the contralateral area. Something very similar was performed also for pelvic surgery in the Oncology department, where massive skeletal reconstructions for bone tumours are necessary. To this aim, in addition to the standard anatomical modelling, prosthesis design, technical/technological refinements, and manufacturing, surgical guides for the correct execution of the osteotomies are also designed and 3D printed. Another original experience is about en-block replacement of vertebral bodies for severe bone loss, in particular for tumours. In this project, technological and biological aspects have also been addressed, to enhance osteointegration and to diminish the risk of infection. In our series there is also a case of successful custom reconstruction of the anterior chest wall. Initial experiences are in progress also for shoulder and elbow surgery, in particular for pre-op planning and surgical guide design in complex re-alignment osteotomies for severe bone deformities. Also in complex flat-foot deformities, in preparation of surgical corrections, 3D digital reconstruction and 3D printing in cheap ABS filaments have been valuable, for indication, planning of surgery and patient communication; with special materials mimicking bone strength, these 3D physical models are precious also for training and preparation of the surgery. In Paediatric surgery severe multi planar & multifocal deformities in children are addressed with personalized pre-op planning and custom cutting-guides for the necessary osteotomies, most of which require custom allografts. A number of complex hip revision surgeries have been performed, where 3D reconstruction for possible final solutions with exact implants on the remaining bone were developed. Elective surgery has been addressed as well, in particular the customization of an original total ankle replacement designed at IOR. Also a novel system with a high-tibial-osteotomy, including a custom cutting jig and the fixation plate was tested. An initial experience for the design and test of custom ankle & foot orthotics is also in progress, starting with 3D surface scanning of the shank and foot including the plantar aspect. Clearly, for achieving these results, multi-disciplinary teams have been formed, including physicians, radiologists, bioengineers and technologists, working together for the same goal


The Bone & Joint Journal
Vol. 102-B, Issue 10 | Pages 1281 - 1288
3 Oct 2020
Chang JS Kayani B Plastow R Singh S Magan A Haddad FS

Injuries to the hamstring muscle complex are common in athletes, accounting for between 12% and 26% of all injuries sustained during sporting activities. Acute hamstring injuries often occur during sports that involve repetitive kicking or high-speed sprinting, such as American football, soccer, rugby, and athletics. They are also common in watersports, including waterskiing and surfing. Hamstring injuries can be career-threatening in elite athletes and are associated with an estimated risk of recurrence in between 14% and 63% of patients. The variability in prognosis and treatment of the different injury patterns highlights the importance of prompt diagnosis with magnetic resonance imaging (MRI) in order to classify injuries accurately and plan the appropriate management. Low-grade hamstring injuries may be treated with nonoperative measures including pain relief, eccentric lengthening exercises, and a graduated return to sport-specific activities. Nonoperative management is associated with highly variable times for convalescence and return to a pre-injury level of sporting function. Nonoperative management of high-grade hamstring injuries is associated with poor return to baseline function, residual muscle weakness and a high-risk of recurrence. Proximal hamstring avulsion injuries, high-grade musculotendinous tears, and chronic injuries with persistent weakness or functional compromise require surgical repair to enable return to a pre-injury level of sporting function and minimize the risk of recurrent injury. This article reviews the optimal diagnostic imaging methods and common classification systems used to guide the treatment of hamstring injuries. In addition, the indications and outcomes for both nonoperative and operative treatment are analyzed to provide an evidence-based management framework for these patients. Cite this article: Bone Joint J 2020;102-B(10):1281–1288


Bone & Joint Research
Vol. 10, Issue 10 | Pages 650 - 658
1 Oct 2021
Sanghani-Kerai A Black C Cheng SO Collins L Schneider N Blunn G Watson F Fitzpatrick N

Aims. This study investigates the effects of intra-articular injection of adipose-derived mesenchymal stem cells (AdMSCs) and platelet-rich plasma (PRP) on lameness, pain, and quality of life in osteoarthritic canine patients. Methods. With informed owner consent, adipose tissue collected from adult dogs diagnosed with degenerative joint disease was enzymatically digested and cultured to passage 1. A small portion of cells (n = 4) surplus to clinical need were characterized using flow cytometry and tri-lineage differentiation. The impact and degree of osteoarthritis (OA) was assessed using the Liverpool Osteoarthritis in Dogs (LOAD) score, Modified Canine Osteoarthritis Staging Tool (mCOAST), kinetic gait analysis, and diagnostic imaging. Overall, 28 joints (25 dogs) were injected with autologous AdMSCs and PRP. The patients were followed up at two, four, eight, 12, and 24 weeks. Data were analyzed using two related-samples Wilcoxon signed-rank or Mann-Whitney U tests with statistical significance set at p < 0.05. Results. AdMSCs demonstrated stem cell-like characteristics. LOAD scores were significantly lower at week 4 compared with preinjection (p = 0.021). The mCOAST improved significantly after three months (p = 0.001) and six months (p = 0.001). Asymmmetry indices decreased from four weeks post-injection and remained significantly lower at six months (p = 0.025). Conclusion. These improvements in quality of life, reduction in pain on examination, and improved symmetry in dogs injected with AdMSCs and PRP support the effectiveness of this combined treatment for symptom modification in canine OA for six months. Cite this article: Bone Joint Res 2021;10(10):650–658


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 43 - 43
1 Nov 2021
Peiffer M Arne B Sophie DM Thibault H Kris B Jan V Audenaert E
Full Access

Introduction and Objective. Forced external rotation is hypothesized as the key mechanism of syndesmotic ankle injuries. This complex trauma pattern ruptures the syndesmotic ligaments and induces a three-dimensional deviation from the normal distal tibiofibular joint configuration. However, current diagnostic imaging modalities are impeded by a two-dimensional assessment, without taking into account ligamentous stabilizers. Therefore, our aim is two-fold: (1) to construct an articulated statistical shape model of the normal ankle with inclusion of ligamentous morphometry and (2) to apply this model in the assessment of a clinical cohort of patients with syndesmotic ankle injuries. Materials and Methods. Three-dimensional models of the distal tibiofibular joint were analyzed in asymptomatic controls (N= 76; Mean age 63 +/− 19 years), patients with syndesmotic ankle injury (N = 13; Mean age 35 +/− 15 years), and their healthy contralateral equivalent (N = 13). Subsequently, the statistical shape model was generated after aligning all ankles based on the distal tibia. The position of the syndesmotic ligaments was predicted based on previously validated iterative shortest path calculation methodology. Evaluation of the model was described by means of accuracy, compactness and generalization. Canonical Correlation Analysis was performed to assess the influence of syndesmotic lesions on the distal tibiofibular joint congruency. Results. Our presented model contained an accuracy of 0.23 +/− 0.028 mm. Mean prediction accuracy of ligament insertions was 0.53 +/− 12 mm. A statistically significant difference in anterior syndesmotic distance was found between ankles with syndesmotic lesions and healthy controls (95% CI [0.32, 3.29], p = 0.017). There was a significant correlation between presence of syndesmotic injury and the morphological distal tibiofibular configuration (r = 0.873, p <0,001). Conclusions. In this study, we constructed a bony and ligamentous statistical model representing the distal tibiofibular joint Furthermore, the presented model was able to detect an elongation injury of the anterior inferior tibiofibular ligament after traumatic syndesmotic lesions in a clinical patient cohort


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_11 | Pages 9 - 9
1 Sep 2021
Taha A Houston A Al-Ahmed S Ajayi B Hamdan T Fenner C Fragkakis A Lupu C Bishop T Bernard J Lui D
Full Access

Introduction. Pulmonary Tuberculosis (TB) can be detected by sputum cultures. However, Extra Pulmonary Spinal Tuberculosis (EPSTB), diagnosis is challenging as it relies on retrieving a sample. It is usually discovered in the late stages of presentation due to its slow onset and vague early presentation. Difficulty in detecting Mycobacterium Tuberculosis bacteria from specimens is well documented and therefore often leads to culture negative results. Diagnostic imaging is helpful to initiate empirical therapy, but growing incidence of multidrug resistant TB adds further challenges. Methods. A retrospective analysis of cases from the Infectious Disease (ID) database with Extra Pulmonary Tuberculosis (EPTB) between 1. st. of January 2015 to 31. st. of January. Two groups were compared 1) Culture Negative TB (CNTB) and 2) Culture Positive TB (CPTB). Audit number was. Results. 31 cases were identified with EPSTB. 68% (n=21) were male. 55% (n=17) patients were Asian, (19% (n=6) were black and 16% (n=5) were of white ethnicity. 90.4% (n=28) patients presented with isolated spinal TB symptoms. No patient had evidence of HBV/HCV/HIV infections. CPTB Group was 51.6% (n=16) compared to CNTB Group with 48.4% (n=15) 48% (15) lumbar involvement, 42% (13) thoracic and 10% (3) cervical. 38.7% (12) patients presented with late neurology, equally in both groups. 56% CPTB patients showed signs of vertebral involvement on plain radiograph compared to 13.3% in CNTB patients. 68.7% CPTB patients had pathological changes or paraspinal collections seen on CT scan compared to 53.3% of CNTB patients. 81% of CPTB showed positive MRI findings compared to 86% in CNTB. Both groups were treated with Anti-TB medications according to local guidelines. 83% patients were followed up till the end of the treatment course. 22.5% (n=7) patients had Ultrasound guided aspiration. 29% (n=9) patients underwent surgical intervention. 3 patients had Laminectomy for decompression. 6 patients underwent Spinal Decompression and Fixation due to extensive bone destruction. No mortality occurred. Conclusion. TB continues to be a growing problem in the developed world with high numbers of patients travelling from endemic regions. 75% of our cases were from Asian or Black ethnicity. The thoracolumbar region was most commonly effected (90%). Approximately 50% of cases of extrapulmonary spinal TB were culture negative. Neurological deficit occurred in 40% patients and 30% of patients required surgery. Standard anti-TB treatment was however effective in all cases with no significant drug resistant variants noted. MRI and CT imaging remain the superior diagnostic tests in the presence of high CN EPSTB


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 22 - 22
1 Nov 2021
Belvedere C Leardini A Gill R Ruggeri M Fabbro GD Grassi A Durante S Zaffagnini S
Full Access

Introduction and Objective. Medial Knee Osteoarthritis (MKO) is associated with abnormal knee varism, this resulting in altered locomotion and abnormal loading at tibio-femoral condylar contacts. To prevent end-stage MKO, medial compartment decompression is selectively considered and, when required, executed via High Tibial Osteotomy (HTO). This is expected to restore normal knee alignment, load distribution and locomotion. In biomechanics, HTO efficacy may be investigated by a thorough analysis of the ground reaction forces (GRF), whose orientation with respect to patient-specific knee morphology should reflect knee misalignment. Although multi-instrumental assessments are feasible, a customized combination of medical imaging and gait analysis (GA), including GRF data, rarely is considered. The aim of this study was to report an original methodology merging Computed-Tomography (CT) with GA and GFR data in order to depict a realistic patient-specific representation of the knee loading status during motion before and after HTO. Materials and Methods. 25 MKO-affected patients were selected for HTO. All patients received pre-operative clinical scoring, and radiological/instrumental assessments; so far, these were also executed post-operatively at 6-month follow-up on 7 of these patients. State-of-the-art GA was performed during walking and more demanding motor tasks, like squatting, stair-climbing/descending, and chair-rising/sitting. An 8-camera motion capture system, combined with wireless electromyography, and force platforms for GRF tracking, was used together with an own established protocol. This marker-set was enlarged with 4 additional skin-based non-collinear markers, attached around the tibial-plateau rim. While still wearing these markers, all analyzed patients received full lower-limb X-ray in standing posture a CT scan of the knee in weight-bearing Subsequently, relevant DICOMs were segmented to reconstruct the morphological models of the proximal tibia and the additional reference markers, for a robust anatomical reference frame to be defined on the tibia. These marker trajectories during motion were then registered to the corresponding from CT-based 3D reconstruction. Relevant registration matrices then were used to report GRF data on the reconstructed tibial model. Intersection paths of GRF vectors with respect to the tibial-plateau plane were calculated, together with their centroids. Results. Pre-operative clinical and radiological scoring confirmed MKO and associated abnormal varism. The morphological characterization of GRF was successfully achieved pre- and post- HTO on patient-specific tibial plateau. Pre-operative GFR patterns and peaks, including those related to knee joint moments, were observed medially on the knee, as expected. In post-HTO, these resulted lateralized and much closer to the tibial plateau spine, as desired. In detail, when post- is compared to pre-op, the difference of the centroids were, on average, 54.6±18.1 mm (min÷max: 36.7÷72.8 mm) more lateral during walking and 52.5±28.5 mm (24.7÷87.6 mm) during stair climbing. When reported in % of the tibial plateau width, these values became 69.2±20.1 (46.1÷81.4) and 78.1±30.1 (43.4÷98.0), respectively. Post-op also clinical scores and GA revealed a considerable overall improvement, especially in functional performances. Conclusions. The reported novel approach allows a combination of motion data, including GFR, and tibial-plateau morphology. Relevant pre- and post-operative routine application offer a quantification of the effect of the original deformity and executed joint realignment, and an assistance for surgical planning in case of HTO as well as ideally in other orthopedic treatments


Objectives. Unicompartmental knee arthroplasty (UKA) is an alternative to total knee arthroplasty for patients who require treatment of single-compartment osteoarthritis, especially for young patients. To satisfy this requirement, new patient-specific prosthetic designs have been introduced. The patient-specific UKA is designed on the basis of data from preoperative medical images. In general, knee implant design with increased conformity has been developed to provide lower contact stress and reduced wear on the tibial insert compared with flat knee designs. The different tibiofemoral conformity may provide designers the opportunity to address both wear and kinematic design goals simultaneously. The aim of this study was to evaluate wear prediction with respect to tibiofemoral conformity design in patient-specific UKA under gait loading conditions by using a previously validated computational wear method. Methods. Three designs with different conformities were developed with the same femoral component: a flat design normally used in fixed-bearing UKA, a tibia plateau anatomy mimetic (AM) design, and an increased conforming design. We investigated the kinematics, contact stress, contact area, wear rate, and volumetric wear of the three different tibial insert designs. Results. Conforming increased design showed a lower contact stress and increased contact area. In addition, increased conformity resulted in a reduction of the wear rate and volumetric wear. However, the increased conformity design showed limited kinematics. Conclusion. Our results indicated that increased conformity provided improvements in wear but resulted in limited kinematics. Therefore, increased conformity should be avoided in fixed-bearing patient-specific UKA design. We recommend a flat or plateau AM tibial insert design in patient-specific UKA. Cite this article: Y-G. Koh, K-M. Park, H-Y. Lee, K-T. Kang. Influence of tibiofemoral congruency design on the wear of patient-specific unicompartmental knee arthroplasty using finite element analysis. Bone Joint Res 2019;8:156–164. DOI: 10.1302/2046-3758.83.BJR-2018-0193.R1


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 37 - 37
1 Aug 2020
Milad D Smit K Carsen S Cheung K Karir A
Full Access

True scaphoid fractures of the wrist are difficult to diagnose in children. In 5–40% of cases, a scaphoid fracture may not be detectable on initial X-ray, some fractures may take up to six weeks to become evident. Since missing a scaphoid fracture may have serious implications, many children with a suspected or “clinical” scaphoid fracture, but normal radiographs, may be over-treated. The purpose of this study was to identify predictors of true scaphoid fractures in children. A retrospective cohort study was performed using electronic medical records for all patients over a two-year period presenting to a tertiary paediatric hospital with hand or wrist injury. Charts were identified by ICD-10 diagnostic codes and reviewed for pre-specified inclusion and exclusion criteria. Patients with either a clinical or true scaphoid fracture were included. When a scaphoid fracture was suspected, but imaging was negative for fracture, the diagnosis of a clinical scaphoid fracture was made. True scaphoid fractures were diagnosed when a fracture was evident on any modality of medical imaging (X-ray, CT, MRI) at any time post-injury. Over the two-year study period, 148 patients (60 scaphoid fractures, 88 non-fractures) met inclusion and exclusion criteria for review. Mean (±SD) age was 13±2 years and 52% were male. The left wrist was injured in 61% of cases. Of the 60 true scaphoid fractures, mean age was 14±2 years, and 69% were male. Fracture location was primarily at the waist (48%) or distal pole (45%) of the scaphoid. Sports were the prevailing mechanism of injury. Six (11%) underwent surgery. Multivariate logistic regression demonstrated that older age, male gender, and right-sided injury were predictors of scaphoid fracture with odds ratios of 1.3 (95% CI: 1.1–1.6, p=0.005), 2.8 (95% CI: 1.3–6, p=0.007), and 2.4 (95% CI: 1.1–5.2, p=0.025). Older age, male gender, and right-sided injury may be predictors of scaphoid fractures in children. Further evidence to support this may enable the formulation of clinical guidelines or rules to reduce the overtreatment of children presenting with a clinical scaphoid fracture


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 42 - 42
1 Dec 2020
Özkan Ö Karaçoban L Dönmez G Korkusuz F
Full Access

Adductor strain is a common injury among football players. The adductor muscle group contains the three adductor muscles. (adductor longus, magnus and brevis) Adductor longus muscle is a triangular-shaped long muscle. This muscle originates from the superior ramus of the pubic bone and inserted into the middle part of the linea aspera. Adductor longus muscle is the most commonly injured muscle of adductors. Sudden acceleration, jumping, stretching, and kicking the ball are common causes of an adductor injury. Adductor muscle strains can result in missed playing time for football players. We present a 26-year-old man soccer player with pain in the left groin and proximal thigh. The symptoms had started during training and after kicking the ball with left foot (dominant side), he felt an acute pain in the groin region and proximal thigh. Despite the injury, he managed to finish the training. The team physician examined the patient immediately after training. The range of motion of both hip joints was in normal ranges and mild pain with adduction. There was a palpable mass at the inner proximal thigh during contraction of adductor muscles. There was no history of groin pain or adductor problems before this injury. Conventional radiographs showed no osseous abnormalities. 36 hours after the injury, MRI revealed acute grade IIB strain in the left adductor longus muscle, including both superior and inferior parts of the muscle. A hematoma was observed in the superior part of the left adductor muscle, with a craniocaudal length of 42 millimeters. There was an adductor muscle strain with hyperintensity extending for a craniocaudal length of approximately 12 centimeters involving more than 50% crosses sectional diameter of the muscle belly. Conservative treatment started immediately, consisting of cold therapy and soft tissue massage. Compression of the injured tissue using a 15-cm elastic bandage roll is done to limit bleeding and provide support. Iced water machine (Game Ready) was used. The team physician examined the player every day and prescribed physiotherapy protocol daily. Additionally, short interval follow-up MRI is used to evaluate the injury. (After 7 and 14 days of the injury) No injection was performed. The player is able to return to play immediately, despite MRI's strain images. The player started straight running 5 days later and joined to team training 8 days later and played 90 minutes-league-match 12 days after injury without any pain. No injection was performed. The player is able to return to play immediately, despite MRI's strain images. The player started straight running 5 days later and joined to team training 8 days later and played 90 minutes-league-match 12 days after injury without any pain. MRI is a useful technique in diagnosing trauma in football players presenting with groin pain. In this case, to estimate time-to-return-to-play, MRI alone is not strong evidence. MRI is a good option for follow up, but anamnesis and clinical examination is not inferior to diagnostic imaging


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 61 - 61
1 Jul 2020
Nault M Leduc S Tan XW
Full Access

This study aimed to evaluate the clinical outcomes of paediatric patients who underwent a retrograde drilling treatment for their osteochondritis dissecans (OCD) of the talus. The secondary purpose was to identify factors that are predictive of a failure of the treatment. A retrospective study was done. All patients treated for talar OCD between 2014 and 2017 were reviewed to extract clinical and demographic information (age, sex, BMI, OCD size and stability, number of drilling, etc). Inclusion criteria were: (1) talar OCD treated with retrograde drilling, (2) less than 18 years, (3) at least one available follow up (4) stable lesion. Exclusion criteria was another type of treatment for a the talar OCD. Additionally, all pre-operative and post-operative medical imaging was reviewed. Outcome was classified based on the last follow-up appointment in two ways, first a score was attributed following the Berndt and Harty treatment outcome grading and second according to the necessity of a second surgery which was the failure group. Chi-square and Mann-Whitney tests were used to compared the success and failure group. Seventeen patients (16 girls and 1 boy, average age: 14.8±2.1 years) were included in our study group. The mean follow up duration was 11.5 (±12) months. Among this population, 4/17 (24%) had a failure of the treatment because they required a second surgery. The treatment result grading according to Berndt and Harty outcome scale identified good results in 8/17 (47%) patients, fair results in 4/17(24%) patients and poor results in 5/17 (29%) patients. The comparisons for various patient variables taken from the medical charts between patients who had a success of the treatment and those who failed did not find any significant differences. At a mean follow-up duration of 11.5 months, 76% of patients in this study had a successful outcome after talar OCD retrograde drilling. No statistically significant difference was identified between the success and failure group. Talar OCD in a paediatric population is uncommon, and this study reviewed the outcome of retrograde drilling with the largest sample size of the literature. Retrograde drilling achieved a successful outcome in 76% of the cases and represents a good option for the treatment of stable talar OCD


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 52 - 52
1 Jul 2020
Clement A Whyne C Hardisty M Wilkie P Akens M
Full Access

Quantitative assessment of metastatic involvement of the bony spine is important for assessing disease progression and treatment response. Quantification of metastatic involvement is challenging as tumours may appear as osteolytic (bone resorbing), osteoblastic (bone forming) or mixed. This investigation aimed to develop an automated method to accurately segment osteoblastic lesions in a animal model of metastatically involved vertebrae, imaged with micro computed tomography (μCT). Radiomics seeks to apply standardized features extracted from medical images for the purpose of decision-support as well as diagnosis and treatment planning. Here we investigate the application of radiomic-based features for the delineation of osteoblastic vertebral metastases. Osteoblastic lesions affect bone deposition and bone quality, resulting in a change in the texture of bony material physically seen through μCT imaging. We hypothesize that radiomics based features will be sensitive to changes in osteoblastic lesion bone texture and that these changes will be useful for automating segmentation. Osteoblastic metastases were generated via intracardiac injection of human ZR-75-1 breast cancer cells into a preclinical athymic rat model (n=3). Four months post inoculation, ex-vivo μCT images (µCT100, Scanco) were acquired of each rodent spine focused on the metastatically involved third lumbar vertebra (L3) at 7µm/voxel and resampled to 34µm/voxel. The trabecular bone within each vertebra was isolated using an atlas and level-set based segmentation approach previously developed by our group. Pyradiomics, an open source Radiomics library written in python, was used to calculate 3D image features at each voxel location within the vertebral bone. Thresholding of each radiomic feature map was used to isolate the osteoblastic lesions. The utility of radiomic feature-based segmentation of osteoblastic bone tissue was evaluated on randomly selected 2D sagittal and axial slices of the μCT volume. Feature segmentations were compared to ground truth osteoblastic lesion segmentations by calculating the Dice Similarity Coefficient (DSC). Manually defined ground truth osteoblastic tumor segmentations on the μCT slices were informed by histological confirmation of the lesions. The radiomic based features that best segmented osteoblastic tissue while optimizing computational time were derived from the Neighbouring Gray Tone Difference Matrix (NGTDM). Measures of coarseness yielded the best agreement with the manual segmentations (DSC=707%) followed by contrast, strength and complexity (DSC=6513%, 5428%, and 4826%, respectively). This pilot study using a radiomic based approach demonstrates the utility of the NGTDM features for segmentation of vertebral osteoblastic lesions. This investigation looked at the utility of isolated features to segment osteoblastic lesions and found modest performance in isolation. In future work we will explore combining these features using machine learning based classifiers (i.e. decision forests, support vector machines, etc.) to improve segmentation performance


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 65 - 65
1 Jul 2020
Sahak H Hardisty M Finkelstein J Whyne C
Full Access

Spinal stenosis is a condition resulting in the compression of the neural elements due to narrowing of the spinal canal. Anatomical factors including enlargement of the facet joints, thickening of the ligaments, and bulging or collapse of the intervertebral discs contribute to the compression. Decompression surgery alleviates spinal stenosis through a laminectomy involving the resection of bone and ligament. Spinal decompression surgery requires appropriate planning and variable strategies depending on the specific situation. Given the potential for neural complications, there exist significant barriers to residents and fellows obtaining adequate experience performing spinal decompression in the operating room. Virtual teaching tools exist for learning instrumentation which can enhance the quality of orthopaedic training, building competency and procedural understanding. However, virtual simulation tools are lacking for decompression surgery. The aim of this work was to develop an open-source 3D virtual simulator as a teaching tool to improve orthopaedic training in spinal decompression. A custom step-wise spinal decompression simulator workflow was built using 3D Slicer, an open-source software development platform for medical image visualization and processing. The procedural steps include multimodal patient-specific loading and fusion of Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) data, bone threshold-based segmentation, soft tissue segmentation, surgical planning, and a laminectomy and spinal decompression simulation. Fusion of CT and MRI elements was achieved using Fiducial-Based Registration which aligned the scans based on manually placed points allowing for the identification of the relative position of soft and hard tissues. Soft tissue segmentation of the spinal cord, the cerebrospinal fluid, the cauda equina, and the ligamentum flavum was performed using Simple Region Growing Segmentation (with manual adjustment allowed) involving the selection of structures on T1 and/or T2-weighted scans. A high-fidelity 3D model of the bony and soft tissue anatomy was generated with the resulting surgical exposure defined by labeled vertebrae simulating the central surgical incision. Bone and soft tissue resecting tools were developed by customizing manual 3D segmentation tools. Simulating a laminectomy was enabled through bone and ligamentum flavum resection at the site of compression. Elimination of the stenosis enabled decompression of the neural elements simulated by interpolation of the undeformed anatomy above and below the site of compression using Fill Between Slices to reestablish pre-compression neural tissue anatomy. The completed workflow allows patient specific simulation of decompression procedures by staff surgeons, fellows and residents. Qualitatively, good visualization was achieved of merged soft tissue and bony anatomy. Procedural accuracy, the design of resecting tools, and modeling of the impact of bone and ligament removal was found to adequately encompass important challenges in decompression surgery. This software development project has resulted in a well-characterized freely accessible tool for simulating spinal decompression surgery. Future work will integrate and evaluate the simulator within existing orthopaedic resident competency-based curriculum and fellowship training instruction. Best practices for effectively teaching decompression in tight areas of spinal stenosis using virtual simulation will also be investigated in future work


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 116 - 116
1 Dec 2013
Lawrenchuk M Vigneron L DeBoodt S
Full Access

With the increasing use of 3D medical imaging, it is possible to analyze 3D patient anatomy to extract features, trends and population specific shape information. This is applied to the development of ‘standard implants’ targeted to specific population groups. INTRODUCTION. Human beings are diverse in their physical makeup while implants are often designed based on some key measurements taken from the literature or a limited sampling of patient data. The different implant sizes are often scaled versions of the ‘average’ implant, although in reality, the shape of anatomy changes as a function of the size of patient. The implant designs are often developed based on a certain demographic and ethnicity and then, simply applied to others, which can result in poor design fitment [1]. Today, with the increasing use of 3D medical imaging (e.g. CT or MRI), it is possible to analyze 3D patient anatomy to extract features, trends and population specific shape information. This can be applied to the development of new ‘standard implants’ targeted to a specific population group [2]. PATIENTS & METHODS. Our population analysis was performed by creating a Statistical Shape Model (SSM) [3] of the dataset. In this study, 40 full Chinese cadaver femurs and 100 full Caucasian cadaver femurs were segmented from CT scans using Mimics®. Two different SSMs, specific to each population, were built using in-house software tools. These SSMs were validated using leave-one-out experiments, and then analyzed and compared in order to enhance the two population shape differences. RESULTS. An SSM is typically represented by an average model and a few independent modes of variation that capture most of the inherent variations in the data. Based on these main modes of variations, the shape features, e.g. length, thickness, curvature neck angle and femoral version, presenting largest variations were determined, and correlations between these features were calculated. Figure 1 represents the Caucasian and Chinese average models, and shows that while the length of these two models was significantly different, the AP and ML dimensions were similar, indicating a difference of morphology (other than a scaling) between the two populations. Figure 2 represents the first mode of variation that illustrates the variation of Chinese femur shape with size. As an example, the neck angle increases of 26° with an increase of 139 mm in femur length, indicative of the effect of changes in loading conditions on geometry as a function of size. CONCLUSION. The advantage of using more advanced statistical analyses is that the 3D data are probed in an unbiased fashion, allowing the most important parameters of variation to be determined. These analyses are thus particularly effective to compare different populations, to evaluate how well existing implant designs fit specific populations, and to highlight the design parameters that need to be adapted for good fitment of specific populations