Advertisement for orthosearch.org.uk
Results 1 - 20 of 987
Results per page:

Acute Compartment Syndrome (ACS) is an orthopaedic emergency that can develop after a wide array of etiologies. In this pilot study the MY01 device was used to assess its ease of use and its ability to continuously reflect the intracompartmental pressure (ICP) and transmit this data to a mobile device in real time. This preliminary data is from the lead site which is presently expanding data collection to five other sites as part of a multi-center study. Patients with long bone trauma of the lower or upper extremity posing a possibility of developing compartment syndrome were enrolled in the study. Informed consent was obtained from the patients. A Health Canada licensed continuous compartmental pressure monitor (MY01) was used to measure ICP. The device was inserted in the compartment that was deemed most likely to develop ACS and ICP was continuously measured for up to 18 hours. Fractures were classified according to the AO/OTA classification. Patient clinical signs and pain levels were recorded by healthcare staff during routine in-patient monitoring and were compared to the ICP from the device. Important treatment information was pulled from the patient's chart to help correlate all of the patient's data and symptoms. The study period was conducted from November 2020 through December 2021. Twenty-six patients were enrolled. There were 17 males, and nine females. The mean age was 38 years (range, 17–76). Seventeen patients received the device post-operatively and nine received it pre-operatively. Preliminary results show that post-operative ICPs tend to be significantly higher than pre-operative ICPs but tend to trend downwards very quickly. The trend in this measurement appears to be more significant than absolute numbers which is a real change from the previous literature. One patient pre-operatively illustrated a steep trend upwards with minimal clinical symptoms but required compartment release at the time of surgery that exhibited no muscle necrosis. The trend in this patient was very steep and, as predicted, predated the clinical findings of compartment syndrome. This trend allows an early warning signal of the absolute pressure, to come, in the compartment that is being assessed by the device. Preliminary results suggest that this device is reliable and relatively easy to use within our institutions. In addition it suggests that intracompartmental pressures can be higher immediately post-op but lower rapidly when the patient does not develop ACS. These results are in line with current literature of the difference between pre and post-operative baselines and thresholds of ICP, but are much more striking, as continuous measurements have not been part of the data set in most of past studies. Further elucidation of the pressure thresholds and profiles are currently being studied in the ongoing larger multicenter study and will add to our understanding of the critical values. This data, plus the added value of continuous trends in the pressure, upwards or downwards, will aid in preventing muscle necrosis during our management of these difficult long bone fractures


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_14 | Pages 15 - 15
23 Jul 2024
Hossain T Kimberley C Starks I Barlow T Barlow D
Full Access

Malalignment is a common complication following tibial surgery, occurring in 10% of fractures. This is associated with prolonged healing time and non-union. It occurs due to inability to maintain a satisfactory reduction. A reduction device, such as the Staffordshire Orthopaedic Reduction Machine (STORM), permits the surgeon to manipulate the fracture and hold it reduced. A retrospective parallel case series was undertaken of all patients undergoing tibial nails over a six-year period from 2014 to 2021. Patient demographics were obtained from medical records. Operative times obtained from the theatre IT system and included the time patient entered theatre and surgical start and finish times for each case. Anteroposterior and lateral long leg post-operative radiographs were reviewed. Angulation was measured in both coronal and sagittal planes, by two separate orthopaedic surgeons. A reduction was classified to be ‘mal-aligned’ if the angle measured was greater than 5 degrees. One tailed unpaired t-test was used to compare alignment in each plane. Bony union was assessed on subsequent radiographs and was determined according to the Radiographic Union Score for Tibial Fractures. 31 patients underwent tibial nail during the time period. 8 patients were lost to follow up and were excluded. Of the remaining 23 patients, the STORM device was utilised in 11. The overall mean alignment was acceptable across all groups at 2.17° in the coronal plane and 2.56° in the saggital plane. Analysing each group individually demonstrated an improved alignment when STORM was utilised: 1.7° (1°–3°) vs 2.54° (0°–5°) for the coronal plane and 1.6° (0°–3°) vs 3.31° (0°–9°) in the saggital plane. This difference was significant in saggital alignment (p=0.03) and showed a positive trend in coronal alignment, although was not significant (p=0.08). The time in theatre was shorter in the control group with a mean of 113 minutes (65 to 219) in comparison to STORM with a mean of 140 minutes (105 to 180), an increased theatre time of 27 minutes (p=0.04). This study demonstrates that STORM can be used in the surgical treatment of tibial fractures resulting in improved fracture alignment with a modest increase in theatre time


Bone & Joint Research
Vol. 10, Issue 7 | Pages 425 - 436
16 Jul 2021
Frommer A Roedl R Gosheger G Hasselmann J Fuest C Toporowski G Laufer A Tretow H Schulze M Vogt B

Aims. This study aims to enhance understanding of clinical and radiological consequences and involved mechanisms that led to corrosion of the Precice Stryde (Stryde) intramedullary lengthening nail in the post market surveillance era of the device. Between 2018 and 2021 more than 2,000 Stryde nails have been implanted worldwide. However, the outcome of treatment with the Stryde system is insufficiently reported. Methods. This is a retrospective single-centre study analyzing outcome of 57 consecutive lengthening procedures performed with the Stryde nail at the authors’ institution from February 2019 until November 2020. Macro- and microscopic metallographic analysis of four retrieved nails was conducted. To investigate observed corrosion at telescoping junction, scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDX) were performed. Results. Adjacent to the nail’s telescoping junction, osteolytic changes were observed in bi-planar radiographs of 20/57 segments (35%) after a mean of 9.5 months (95% confidence interval 7.2 to 11.9) after surgery. A total of 8/20 patients with osseous alterations (40%) reported rest and ambulation pain of the lengthened segment during consolidation. So far, 24 Stryde nails were retrieved and in 20 (83%) macroscopic corrosion was observed at the nail’s telescoping junction. Before implant removal 11/20 radiographs (55%) of lengthened segments with these 20 nails revealed osteolysis. Implant retrieval analysis by means of SEM showed pitting and crevice corrosion. EDX detected chromium as the main metallic element of corrosion. Conclusion. Patients are exposed to the risk of implant-related osteolysis of unclear short- and long-term clinical consequences. The authors advocate in favour of an early implant removal after osseous consolidation. Cite this article: Bone Joint Res 2021;10(7):425–436


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 4 - 4
1 May 2016
Goto T Hamada D Tsutsui T Wada K Mineta K Sairyo K
Full Access

Introduction. Acetabular reconstruction of a total hip arthroplasty (THA) for a case with severe bone loss is most challenging for surgeon. Relatively high rate of failure after the reconstruction surgery have been reported. We have used Kerboull-type acetabular reinforcement devices with morsellised or bulk bone allografts for these cases. The purpose of this study was to examine the midterm results of revision THA using Kerboull-type acetabular reinforcement devices. Patients and methods. We retrospectively reviewed 20 hips of revision THA (20 patients) between February 2002 and August 2010. The mean age of the patients at the time of surgery was 67.4 years (range 45–78). All of the cases were female. The mean duration of follow-up was 6.5 years (range 2.1–10.4). The reasons of revision surgeries were aseptic loosening in 10 hips, migration of bipolar hemiarthroplasty in 8 hips, and rheumatoid arthritis in 2 hips. We classified acetabular bone defects according to the American Academy of Orthopaedic Surgeons (AAOS) classification; we found two cases of Type II and eighteen cases of Type III. In terms of bone graft, we performed both bulk and morsellised bone grafts in 6 hips and morsellised bone grafts only in 14 hips. We assessed cup alignment using postoperative computed tomography (CT) and The post-operative and final follow-up radiographs were compared to assess migration of the implant. We measured the following three parameters: the angle of inclination of the acetabular device (Fig. 1); the horizontal migration (Fig. 2a); and vertical migration (Fig. 2b). Substantial migration was defined as a change in the angle of inclination of more than 3 degrees or migration of more than 3 mm. The pre- and postoperative hip functions were evaluated using the Japanese Orthopaedic Association (JOA) hip score. Results. The mean cup inclination and anteversion were 38.4 degrees and 10.6 degrees, respectively. The mean change in the angle was 1.9 degrees in inclination of the device. The average horizontal migration was 1.0 mm, and the vertical migration was 2.0 mm. Only one hip showed substantial migration with breakage of the device. This failure case represented a large amount of posterior pelvic tilt in standing position postoperatively. The mean JOA hip score was increased from 46.7 to 74.8. Discussion. Poor outcome using Kerboull-type reinforcement plate with morsellised bone graft only has been demonstrated by many reports. In these literatures, bulk bone graft was recommended particularly in the case of large bone defect such as larger than half of the rounded plate of the device or more than 2 cm of thickness. In our case series, acetabular reconstruction using a Kerboull- type acetabular reinforcement device and bone graft gives satisfactory mid-term results even with morsellized bone graft only. One possible interpretation is that most of our cases had relatively small bone defect according to the staging of severity of the superior segmental bone loss made by Kawanabe et al. We suggest that the progressive posterior pelvic tilt should be considered to be a risk of poor outcome of the acetabular reconstruction using this device. To view tables/figures, please contact authors directly


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 127 - 127
1 Feb 2020
Paszicsnyek T Innocenti B Bori E Stiegler C
Full Access

Introduction. Functional stability is a new concept stating that lower tensions than expected are enough to achieve joint stability leading to proper function after TKA. To check this rationale clinically, a new electronic device (DLB bicon sensorplate) was used intraoperatively to measure ligament tension and allow the surgeon to proper balance the knee after TKA insertion. In this study a controlled clinical analysis at 1 YR follow-up is reported. Methods. A cohort of 25 patients was treated in a single centre, single surgeon study to quantify the influence of the use of this electronic device in the short- and midterm results (DLB Group). A control cohort of 25 patients were treated without the device (Control Group). All patients were monitored by the use of OKS, AKSS and FJS; beside that, the muscle function before and after the surgery was tested and a load distribution analysis was performed. The FU examinations were done after 6 weeks, 3 months, 6 months and 1 yr. All the patients finished the study and could be included. Results. DLB group showed an improvement of 10% in the OKS compared to the Control Group, even if the preoperative measurements were lower (OKS DLB Group improve from 18 to 44, Control group from 26 to 40). Also the AKSS shows an improvement around 10% in the DLB Group (38 to 97) compared to the Control Group (53 to 93); the knee score improved also in the same matter (DLB Group 32 to 91, Control Group 40 to 91). Similar improvement in the FJS was also found in the DLB Group and in the Control Group. The muscles function testing showed a faster recovery of the muscle status and restore of the original functionality in the DLB Group. DLB Group patients recovered approx. 1/3 of the time faster than Control Group ones. The load distribution analysis shows a better load distribution with a more normal gait in the DLB Group. Summary. In all PROMs the group treated by the support of the device showed a significant improvement and better clinical outcome, also the subjective patient satisfaction was higher in the DLB Group, where the proper ligament tension (aimed to functional stability) was achieved. Conclusion. The use of sensory devices to secure proper balancing is justified by several studies. This study proves the efficacy of using a sensory device intraoperatively to measure the necessary ligament tension to achieve functional stability in a controlled single centre study


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 9 - 9
1 Apr 2019
Cavagnaro L Burastero G Chiarlone F Felli L
Full Access

Introduction. Bone loss management represents one of the most challenging issues for the orthopaedic surgeon. In most cases, stems, structural allograft, TMcones, and sleeves are adequate to allow optimal implant stability and durable fixation. In selected cases of wide metadiaphyseal bone defects, these devices do not provide proper intraoperative stability. In such scenarios, further steps are needed and include complex modular reconstruction, substitution with megaprosthesis (exposing patients at high risk of early failure) or joint arthrodesis that can yield unacceptable results. The aim of this paper is to present early results obtained with a new custom-made implant for complex metadiaphyseal bone defects management in knee revision surgery. By means of case presentations the authors would highlight the possibilities and technical notes of this novel device in complex knee revision surgery. Methods. Since2015, 8 custom-made porous titanium devices were implanted for massive bone defect management in 6 knee arthroplasty revision procedures. Five patients were staged revision for periprosthetic joint infection (PJI) and one patient underwent a staged revision for post-traumatic septic arthritis. Main demographic and surgical data were collected. Clinical (Range of Movement [ROM], Knee Society Score [KSS] and Oxford Knee Score [OKS]), radiological findings and complications were recorded at different time points and statistically evaluated. Mean follow up was 19.5 ± 9.6months. Results. The study group included 4 males and 2 females with a mean age of 63.7 ± 5.5 years and a mean Body Mass Index of 29.3 ± 4.1. Globally, the mean number of previous surgeries was 4.8 ± 2.7. The custom made device was combined with a hinged prosthesis in 5 cases and with a constrained condylar implant in 1 patient. Hybrid fixation was used in all cases. The mean KSS and OKS of the entire population improved significantly from 35.3 ±6.5 and 19.2 ±3.5 preoperatively to 85.8 ±4.0 and 39.3 ±3.1 at the time of last follow-up evaluation (p<0.01). The range of motion improved from 46.7 ±9.8 of mean preoperative flexion and 7.8 ±6.8 of mean preoperative flexion contracture to 93.3 ±10.3 and 1.2 ±2.9 respectively (p<0.01). Radiological analysis showed no migration or implant loosening. No intraoperative or postoperative complication was recorded. One patient required a prolonged antibiotic therapy for positive culture samples of sonication of the retrieved spacer. No implant mismatch between the preoperative planning and the final implant was reported. Conclusion. The presented custom-made implant showed promising early clinical and radiological results. In extremely selected cases, this new device can be considered a safe and effective surgical step between “off the shelf” reconstruction implants and knee substitution with a tumor megaprosthesis. Accurate surgical planning and intraoperative management of soft tissues and residual bone stock are of paramount importance


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_5 | Pages 26 - 26
1 Feb 2016
Leboucher J Dib Z Almouahed S Stindel E
Full Access

Tracking of the anterior pelvic plane is of interest for medical interventions such as total hip arthroplasty, for which it is used as a reference for the positioning of the acetabular cup. We introduce and evaluate a new portable ultrasound device for the measure of the pelvic tilt in different positions of daily living. This device consists of two ultrasound probes articulated with respect to each other in order to visualise simultaneously the bony landmarks of interest that are one of the anterior superior iliac spine and the pubic symphysis. A series of sensors and the calibration of the ultrasound probes allow the measurement of the relative position of the landmarks with respect to a vertical line. The accuracy of the device has been investigated through a simulation study and showed errors (mean ± standard deviation [minimum; maximum]) as 0.18° ± 0.96° [−3.85°; 4.33°], with 99% of measurements within a ± 2.5° with respect to the actual pelvic tilt. This level of accuracy is similar to what can be found in the literature for the same purposes. Our device gathers advantages such as being portable and user friendly in order to be used during the pre-operative consultation. It is also non invasive and non irradiant. Further investigations will be run to assess this accuracy in vitro and in vivo


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_6 | Pages 50 - 50
1 May 2021
Segev E Mor Y Inbar L Ovadia D Gigi R
Full Access

Introduction. Several hexapod external fixator devices are used in the treatment of bone fracture and deformity corrections. One characteristic of all of them is the requirement for manual adjustment of the fixator struts. The purpose of this study was to introduce a novel robotic system that executes automatic adjustment of the struts. Materials and Methods. Ten patients were treated for various bone deformities using a hexapod external fixator with Auto Strut system, which implemented automatic adjustment of the fixator struts. Patients arrived at the clinic for follow during the correction period until the removal of the hardware. During each visit, the progress of the correction was assessed (clinically and radiographically) and reading of the strut scale numbers was performed. Results. All patients completed the treatment plan during the follow up period achieving all planned correction goals. Healing of the bone ranged between approximately one to seven months. Duration of distraction ranged between 10 and 90 days. The distraction index ranged between 8 and 15 days/cm. The length of distraction varied between 1 and 6 cm. The planned corrections were fully attained in all patients who completed the treatment (n=10). No device related adverse events were reported. One patient was not available for registration of struts length, one patient switched to manual struts due to personal preference.48 struts of eight patients were recorded, 94% of the final strut number readings presented a displacement of 0–1 mm, three struts (6%) had 2–3 mm displacement due to inter-observer reading errors. indicating high precision of the automatic adjustment. Conclusions. This study presents preliminary result, showing that Auto Strut can successfully replace the manual strut adjustment providing important advantages that benefit the patient, the caregiver and the surgeon


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 106 - 106
1 Feb 2017
Le D Smith K Mitchell R
Full Access

Introduction. Orientation of the acetabular component in total hip arthroplasty has been shown to influence component wear, stability, and impingement. Freehand placement of the component can lead to widely variable radiographic outcomes. Accurate abduction, in particular, can be difficult in the lateral decubitus position due to limited ability to appreciate and control positional obliquity of the pelvis. A CT-based mechanical navigation device has been shown to decrease cup placement error. This is an independent report of a single-surgeon's radiographic results using the device to control cup abduction. Patients and Methods. Sixty-four (64) consecutive elective THRs in 58 patients were performed via a supercapsular percutaneously-assisted (SuperPATH) surgical approach. Intraoperatively, the acetabular components were aligned with the aid of the CT-based mechanical navigation device (HipXpert; Surgical Planning Associates, Medford, MA). The cup orientation was then further adjusted to ensure that the anterior rim of the acetabular component was not prominent to avoid psoas impingement. Postoperatively, radiographic abduction was measured on standing postoperative radiographs. Results. Measured on standing postoperative radiographs, the cup radiographic abduction angle averaged 42.7° with a standard deviation of ± 3.9° and a range of 35° to 51°. Conclusions. Total hip arthroplasty using a CT-based navigation device as a guide for abduction led to cup implantation within a very narrow abduction range. This navigation device deserves more widespread interest and study, as acetabular component malposition remains a major concern in THR


Aims. To compare the efficacy of decompression alone (DA) with i) decompression and fusion (DF) and ii) interspinous process device (IPD) in the treatment of lumbar stenosis with degenerative spondylolisthesis. Outcomes of interest were both patient-reported measures of postoperative pain and function, as well as the perioperative measures of blood loss, operation duration, hospital stay, and reoperation. Methods. Data were obtained from electronic searches of five online databases. Included studies were limited to randomised-controlled trials (RCTs) which compared DA with DF or IPD using patient-reported outcomes such as the Oswestry Disability Index (ODI) and Zurich Claudication Questionnaire (ZCQ), or perioperative data. Patient-reported data were reported as part of the systematic review, while meta-analyses were conducted for perioperative outcomes in MATLAB using the DerSimonian and Laird random-effects model. Forest plots were generated for visual interpretation, while heterogeneity was assessed using the I. 2. -statistic. Results. A total of 13 articles met the eligibility criteria. Of these, eight compared DA with DF and six studies compared DA with IPD. Patient-rated outcomes reported included the ODI and ZCQ, with mixed results for both types of comparisons. Overall, there were few statistically significant and no clinically significant differences in patient-rated outcomes. Study quality varied greatly across the included articles. Meta-analysis of perioperative outcomes revealed DF to result in greater blood loss than DA (MD = 406.74 ml); longer operation duration (MD = 108.91 min); and longer postoperative stay in hospital (MD = 2.84 days). Use of IPD in comparison to DA led to slightly reduced operation times (MD = –25.18 min), but a greater risk of reoperation compared to DA (RR = 2.70). Conclusion. Currently there is no evidence for the use of DF or IPD over DA in both patient-rated and perioperative outcomes. Indeed, both procedures can potentially lead to greater cost and risk of complications, and therefore, a stronger evidence base for their use should be established before they are promoted as routine options in patients with degenerative spondylolisthesis


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_20 | Pages 38 - 38
1 Dec 2017
Dagnino G Georgilas I Georgilas K Köhler P Morad S Gibbons P Atkins R Dogramadzi S
Full Access

The treatment of joint-fractures is a common task in orthopaedic surgery causing considerable health costs and patient disabilities. Percutaneous techniques have been developed to mitigate the problems related to open surgery (e.g. soft tissue damage), although their application to joint-fractures is limited by the sub-optimal intra-operative imaging (2D- fluoroscopy) and by the high forces involved. Our earlier research toward improving percutaneous reduction of intra-articular fractures has resulted in the creation of a robotic system prototype, i.e. RAFS (Robot-Assisted Fracture Surgery) system. We propose a robot-bone attachment device for percutaneous bone manipulation, which can be anchored to the bone fragment through one small incision, ensuring the required stability and reducing the “biological cost” of the procedure. It consists of a custom-designed orthopaedic pin, an anchoring system (AS secures the pin to the bone), and a gripping system (GS connects the pin and the robot). This configuration ensures that the force/torque applied by the robot is fully transferred to the bone fragment to achieve the desired anatomical reduction. The device has been evaluated through the reduction of 9 distal femur fractures on human cadavers using the RAFS system. The devices allowed the reduction of 7 fractures with clinical acceptable accuracy. 2 fractures were not reduced: in one case the GS failed and was not able to keep the pin stationary inside the robot (pin rotates inside the GS). The other fracture was too dislocated (beyond the operational workspace capability of the robot). A more stable GS will be designed to avoid displacements between the pin and the robot


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 125 - 125
1 Mar 2013
Amiri S Wilson D Masri B
Full Access

INTRODUCTION. Rotational malalignment of the components in total knee arthroplasty has been linked to patellar maltracking, improper soft tissue balance, abnormal kinematics, premature wear of the polyethylene inlay, and subsequent clinical complications such as anterior knee pain (Barrack et al., 2001; Zihlmann et al., 2005; Lakstein at al., 2010). This study investigates an innovative image-based device that is designed to be used along with an intraoperative Isocentric (ISO-C) 3D imaging C-arm, and the conventional surgical instruments for positioning the femoral component at accurate rotational alignment angles. METHODS. The new device was tested on 5 replica models of the femur (Sawbones). Zimmer NexGen total knee replacement instruments were used to prepare the bones. After making the distal transverse cut on the femurs, the trans-epicondylar-axis (TEA) were defined by a line connecting the medial and lateral epicondyles which were marked by holes on the bone models. The 4-in-1 cutting jig was placed and pinned to the bones with respect to the TEA considering 5 different planned rotational alignments: −10°, −5°, 0°, +5°, and +10° (minus sign indicating external and plus sign internal rotation). At this point, the jig was replaced by the alignment device using the head-less pins as the reference, and subsequently an Iso-c 3D image of the bone was acquired using Siemens ARCADIS Orbic C-arm. The image was automatically analyzed using custom software that determined the angle between the TEA and the reference pins (Fig 1). The difference between the angle read from the device and the planned angle was then used to correct the locations of the reference pins through a custom protractor device. Preparation of the bone was continued by placing the 4-in-1 jigs on the newly placed pins. Three-dimensional images of the bones after completion of the cuts were acquired, and the angle between the final cut surface and the TEA was determined. RESULTS. The results are listed in Fig 2. The rotational angle read from the image-based device showed misalignments in the range of 0.53° to 5.94° (RMS error=3.67°). After alignments were corrected, the final cut accuracy was in the range of 0.3° to 0.74° (RMS error=0.5°). DISCUSSION. The introduced device was very accurate (0.5°) in correcting the rotational alignment of the femoral component. The range of errors for defining the boney landmarks through palpation and visualization is expected to be much larger than was observed in this work (RMS error =3.67°), due to soft tissue obstructions and time pressure during surgery. This would highlight the value of the device even more. The introduced technology is expected to add about 5 to 10 minutes to the surgery at a safe radiation dose comparable to a round transatlantic flight. The surgeon and staff can keep a safe distance during the short imaging time. CONCLUSION. The introduced device provides a fast and safe tool for improving component alignments in total knee arthroplasty


The Bone & Joint Journal
Vol. 97-B, Issue 5 | Pages 582 - 589
1 May 2015
Brennan SA Ní Fhoghlú C Devitt BM O’Mahony FJ Brabazon D Walsh A

Implant-associated infection is a major source of morbidity in orthopaedic surgery. There has been extensive research into the development of materials that prevent biofilm formation, and hence, reduce the risk of infection. Silver nanoparticle technology is receiving much interest in the field of orthopaedics for its antimicrobial properties, and the results of studies to date are encouraging. Antimicrobial effects have been seen when silver nanoparticles are used in trauma implants, tumour prostheses, bone cement, and also when combined with hydroxyapatite coatings. Although there are promising results with in vitro and in vivo studies, the number of clinical studies remains small. Future studies will be required to explore further the possible side effects associated with silver nanoparticles, to ensure their use in an effective and biocompatible manner. Here we present a review of the current literature relating to the production of nanosilver for medical use, and its orthopaedic applications.

Cite this article: Bone Joint J 2015; 97-B:582–9.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 48 - 48
1 Apr 2019
Etchels L Wang L Al-Hajjar M Williams S Thompson J Fisher J Wilcox R Jones A
Full Access

INTRODUCTION. There is great potential for the use of computational tools within the design and test cycle for joint replacement devices. The increasing need for stratified treatments that are more relevant to specific patients, and implant testing under more realistic, less idealised, conditions, will progressively increase the pre-clinical experimental testing work load. If the outcomes of experimental tests can be predicted using low cost computational tools, then these tools can be embedded early in the design cycle, e.g. benchmarking various design concepts, optimising component geometrical features and virtually predicting factors affecting the implant performance. Rapid, predictive tools could also allow population-stratified scenario testing at an early design stage, resulting in devices which are better suited to a patient-specific approach to treatment. The aim of the current study was to demonstrate the ability of a rapid computational analysis tool to predict the behaviour of a total hip replacement (THR) device, specifically the risk of edge loading due to separation under experimental conditions. METHODS. A series of models of a 36mm BIOLOX. ®. Delta THR bearing (DePuy Synthes, Leeds, UK) were generated to match an experimental simulator study which included a mediolateral spring to cause lateral head separation due to a simulated mediolateral component misalignment of 4mm. A static, rigid, frictionless model was implemented in Python (PyEL, runtime: ∼1m), and results were compared against 1) a critically damped dynamic, rigid, FE model (runtime: ∼10h), 2) a critically damped dynamic, rigid, FE model with friction (µ = 0.05) (runtime: ∼10h), and 3) kinematic experimental test data from a hip simulator (ProSim EM13) under matching settings (runtime: ∼6h). Outputs recorded were the variation of mediolateral separation and force with time. RESULTS/DISCUSSION. The low cost PyEL model successfully replicated experimental trends in maximum separation with changing swing phase load. PyEL provided a good estimate of the high separation values which resulted from lower swing phase loads, but overestimated the separation resulting from higher swing phase loads. The separation verses time curve of the dynamic rigid FE (with and without friction) closely matched that of the PyEL model. Inertia caused a small delay when moving into and out of the cup (peak delay ∼0.025s). Therefore there was no substantial advantage to the more costly dynamic finite element models as a predictive design tool for hard-on-hard bearings


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 63 - 63
1 Jan 2016
Ishii M Takagi M Kawaji H Tamaki Y Sasaki K
Full Access

Acetabular reconstruction of extensive bone defect is troublesome in revision total hip arthroplasty (rTHA). Kerboull or Kerboull type reinforcement acetabular device with allobone grafting has been applied since 1996. Clinical results of the procedure were evaluated. Patients. One hundred and ninety-two consecutive revision total hip arthroplasties were performed with allograft bone supported by the Kerboull or Kerboull type reinforcement acetabular device from 1996 to 2009. There were 23 men and 169 women. Kerboull plates were applied to 18 patients, and Kerboull type plates to 174. The mean follow up of the whole series was 8 years (4–18years). Surgical Technique. The superior bone defect was reconstructed principally by a large bulky allo block with plate system. Medial bone defect was reconstructed by adequate bone chips and/or sliced bone plates. After temporally fixation of bulky bone block with two 2.0mm K-wires, it was remodeled by reaming to fit the gap between host bone and plate, followed by fixation to the iliac bone by screws. Finally, residual space of the defect between host bone and the fixed plated was filled up with morselized cancellous bones, bone chips, and/or wedged bony fragments with impaction. This method was sufficiently applicable to AAOS Typeâ�, II, and III bone defects. In case of AAOS Typeâ�£, the procedure was also available after repairing discontinuation between distal and proximal bones by reconstrusion plate or allografting with tibial bone plates or sliced femoral head. Results. Nine patients (4.7%) required revision surgery (infection 5, breakage 3, and malalignment 1). The plate breakage was observed in 8 joints (4.2%). Three patients had no symptoms after the breakage. Three required revision, but the other cases were carefully observed without additional surgical intervention. Ten-year survival rate by Kaplan-Meier method was 96.6% when the endpoint was set revision by asceptic loosning. Conclusions. This study indicated that acetabular allograft reconstructions reinforced by Kerboull or Kerboull type acetabular device were able to recover bone stock with anatomic reconstruction of femoral head center, thus providing satisfactory clinical results in middle term period


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_22 | Pages 1 - 1
1 May 2013
Berry D
Full Access

Most early failures of THA are related to patient factors and technical “surgeon” factors. Most late failures of THA are related to patient factors and device factors. Occasionally unexpected device-specific failure modes cause specific early failure patterns. The most common reasons for early THA failure are infection and instability. Infection risk is strongly influenced by patient factors. Instability early after THA is usually a technical problem, but at times also is patient related. Important late failure modes of THA include loosening, wear and osteolysis, and periprosthetic fracture. Loosening and wear are at least in part device related. Late periprosthetic fracture is almost mainly patient related. Taken together these data suggest the following: . Most strongly related to patient factors: Early and late infection, periprosthetic fracture and wear and osteolysis. Most strongly related to surgeon factors: Early infection, instability, and loosening. Most strongly related to device factors: Wear, loosening, and unique mechanical implant failure modes


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_1 | Pages 151 - 151
1 Jan 2013
Griffiths S Walter R Trimble K Cove R
Full Access

Background. During cephalomedullary nail stabilisation of subtrochanteric femoral fractures, damage to the distal anterior femoral cortex by the nail is a recognised cause of periprosthetic fracture. Currently available cephalomedullary devices vary widely in anteroposterior curvature, though all are less curved than the mean anatomic human femur. This study tests the hypothesis that a cephalomedullary device with greater anteroposterior curvature will achieve a more favourable position in the distal femur, with greater distance of the nail tip from the anterior cortex, and therefore lower risk of cortical damage. Methods. Retrospective analysis of postoperative radiographs from patients undergoing subtrochanteric femoral fracture stabilisation with either a)Stryker Long Gamma Nail (radius of curvature 2.0m, 19 patients) or Synthes long PFNα (1.5m, 19 patients) was performed. Distance from the anterior femoral cortex to the anterior part of the distal nail was measured, using the known diameter of the nail as a radiographic size marker. Results. The mean distance from nail to anterior cortex was significantly higher for the PFNα group than the Long Gamma Nail Group (7.31mm vs 4.73mm, unpaired t-test p=0.003). Conclusion. Using a cephalomedullary device with a tighter anteroposterior curvature resulted in a distal nail position better-centred in the sagittal plane, thus decreasing the risk of anterior femoral cortex damage and periprosthetic fracture. We strongly recommend consideration of anteroposterior curvature when choosing a cephalomedullary nailing system


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 518 - 518
1 Dec 2013
Saleh A Gad B Higuera C Klika A Iannotti J Barsoum W
Full Access

Background:. Acetabular component malpositioning in total hip arthroplasty increases the risk of dislocations, impingement, and long-term component wear. The purpose of this Sawbones study was to define the efficacy of a novel acetabular imprinting device (AID) with 3D preoperative planning in accurately placing the acetabular component. Methods:. Four surgeons performed the study on osteoarthritic and dysplastic Sawbone models using 3 different methods for placing the acetabular component (total n = 24). The 3 methods included (1) standard preoperative planning and instrumentation (i.e., standard method), (2) 3D computed tomographic (CT) scan planning and standard instrumentation (i.e., 3D planning method), and (3) 3D CT scan planning combined with an acetabular imprinting device (i.e., AID method). In the AID method, 3D planning software was used to virtually place the acetabular component at 40° of inclination and 22° of anteversion and create a parallel guide pin trajectory. A patient-specific surrogate bone model with a built-in guide pin trajectory was then manufactured as a stereoltihography device (Fig. 1A). The surgeon molded bone cement into the acetabulum imprinting the acetabular features while maintaining the guide pin trajectory (Fig. 1B). Afterward, the AID was removed from the surrogate bone model and placed onto the Sawbone, ensuring a secure fit (Fig. 1C). A guide pin was drilled into the Sawbone along the prescribed trajectory. With the guide pin in place, the surgeon could ream the acetabulum and impact the acetabular component using the guide pin as a visual aid (Fig. 1D). Postoperatively, a CT scan was used to define and compare the actual implant location with the preoperative plan. Statistical analysis was performed as 3 group comparisons using the chi-squared test for categorical data and analysis of variance (ANOVA) for continuous measurements. Results:. The AID method significantly decreased the mean deviation of acetabular component inclination (3.4°) compared to standard (14.0°) and 3D planning methods (17.4°) (p = 0.003). The mean deviation in version was 10.6° in the standard method, 10.8° in the 3D planning method, and 5.3° in the AID method (p = 0.28). Overall, AID reduced the number of implants malpositioned in excess of 10° from the planned position to 12.5%, compared with 87.5% in the standard method and 75% in the 3D planning method (p = 0.005) (Fig. 2). Conclusions:. Novel 3D preoperative planning combined with AID allows the surgeon to accurately replicate the preoperative plan using Sawbones models. This proof-of-concept study justifies a clinical trial to compare the AID to standard surgical techniques


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 318 - 318
1 Mar 2013
Walsh W Salleh R Marel E Walter L Dickison D
Full Access

Introduction. Mechanical stabilization following periprosthetic fractures is challenging. A variety of cable and crimping devices with different design configurations are available for clinical use. This study evaluated the mechanical performance of 5 different cable systems in vitro. The effect of crimping device position on the static failure properties were examined using a idealized testing set up. Materials and Methods. Five cable systems were used in this study; Accord (Smith & Nephew), Cable Ready (Zimmer), Dall-Miles (Stryker), Osteo Clage (Acumed) and Control Cable (DePuy). Cables were looped over two 25 mm steel rods. Cable tension was applied to the maximum amount using the manufactures instrumentation. Devices were crimped by orthopaedic surgeon according to instructions. Crimping device/sleeve was secured in two different positions; 1. Long axis in-line with the load; 2. Long axis perpendicular to the load (Fig 1). Four constructs were tested for each cable system at each position. All constructs were tested following equilibration in phosphate buffered saline at 37 degrees Celsius using a servohydraulic testing machine (MTS 858 Bionix Testing Machine, MTS Systems) at a displacement rate of 10 mm per minute until failure. The failure load, stiffness and failure model (cable failure or slippage) was determined for all samples. Data was analysed using a two way analysis of variance (ANOVA) followed by a Games Howell post hoc test. One sample of each cable – crimping construct was embedded in PMMA and sectioned to examine the crimping mechanism. Results. In vitro mechanical performance of the five cable systems tested differed between systems. Position of the crimping device was also a significant variable which influenced the peak load, stiffness as well as failure mode. Cable failure, cable failure inside crimping sleeve as well as cable slippage was observed when the crimper was perpendicular to the applied load while cable slippage was found when the load was in line with the crimper. Peak loads of the systems ranged from well over 5 kN (Cable Ready) to 1 kN (Accord) (Fig 2). Analysis of the crimping technique varied between systems as was achieved either with direct or indirect cable compression (Fig 3). Discussion. Cable systems achieve fixation through different means as demonstrated in this study. These differences translated into different failure modes as well as a wide range of mechanical properties when tested under idealized conditions. Placement of the crimping device can influence the failure loads as noted in the current testing


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 85 - 85
1 Sep 2012
Kanekasu K Hisakado H
Full Access

Introduction. Total hip arthroplasty (THA) using the direct anterior approach (DAA) in a supine position is a minimally invasive surgery that reduces postoperative dislocation. Excellent exposure of both the acetabulum and proximal femoral part is important to reduce intraoperative complications. Generally, two surgical assistants need to hold four retractors to maintain excellent exposure of the acetabulum. We examined intra- and postoperative complications as indicators of the efficiency of using the “Magic Tower” (MT) device compared with a non-MT group. Material and Method. Twenty consecutive DAA THAs using MT were analyzed, and 20 DAA THAs not using MT were also analyzed. MT is a retractor-holding device, and has an arm structure that can be moved in a wide variety of directions. This device holds a retractor stably, and each movement of the arm can be locked by one click. Operating time, blood loss, length of skin incision, intraoperative complications, and number of assistants were recorded. Postoperative radiographs were obtained to evaluate implant position. Results. Mean operating time was 105 min in the MT group and 118 min in the non-MT group. Mean blood loss was 232 g in the MT group and 233 g in the non-MT group. Mean length of skin incision was 80 mm in the MT group and 85 mm in the non-MT group. Mean cup inclination was 45.8° in the MT group and 47.3° in the non-MT group. Postoperative implant position was also excellent in both groups. In all comparisons, no significant differences were seen between groups. No intraoperative complications were encountered. Two assistants were required in the non-MT group, and one in the MT group. Discussion. A majority of the complications reported with THA can be attributed to access issues, i.e., difficulties in exposure and accurate component implantation. To achieve excellent exposure at the acetabulum, four retractors (anterior, posterior, cranial, and caudal) are desirable. In such procedures, two surgical assistants are needed to hold retractors. One of these assistants needs to hold the anterior retractor and cranial/caudal retractor from the opposite side of the surgery beyond the abdomen of the patient. However, the assistant on the opposite side cannot achieve good exposure, as strong retraction of the anterior part of the acetabulum may cause complications of femoral nerve palsy. The MT is able to hold a retractor firmly by applying pressure toward the acetabulum instead of traction, and also reduces the number of surgical assistants required. While preparing the femur, exposure of the femoral canal was also better than in the non-MT group. Conclusion. In primary DAA THA, no significant differences between groups were identified. However, the MT is clearly a useful device that allows maintenance of excellent exposure, reducing the number of surgical assistants required