Geometric
Distal radius fractures (DRFs) are one of the most common types of fracture and one which is often treated surgically. Standard X-rays are obtained for DRFs, and in most cases that have an intra-articular component, a routine CT is also performed. However, it is estimated that CT is only required in 20% of cases and therefore routine CT's results in the overutilisation of resources burdening radiology and emergency departments. In this study, we explore the feasibility of using
Abstract. OBJECTIVES. Application of
Introduction. Three-dimensional (3D) morphological understanding of the hip joint, specifically the joint space and surrounding anatomy, including the proximal femur and the pelvis bone, is crucial for a range of orthopedic diagnoses and surgical planning. While
Evaluation of patient specific spinopelvic mobility requires the detection of bony landmarks in lateral functional radiographs. Current manual landmarking methods are inefficient, and subjective. This study proposes a
Introduction. Inaccurate identification of implants on X-rays may lead to prolonged surgical duration as well as increased complexity and costs during implant removal.
Abstract. Objectives. Knee alignment affects both the development and surgical treatment of knee osteoarthritis. Automating femorotibial angle (FTA) and hip-knee-ankle angle (HKA) measurement from radiographs could improve reliability and save time. Further, if the gold-standard HKA from full-limb radiographs could be accurately predicted from knee-only radiographs then the need for more expensive equipment and radiation exposure could be reduced. The aim of this research is to assess if
Introduction. Automated identification of arthroplasty implants could aid in pre-operative planning and is a task which could be facilitated through artificial intelligence (AI) and
Introduction. Gait laboratory measurement of whole-body kinematics and ground reaction forces during a wide range of activities is frequently performed in joint replacement patient diagnosis, monitoring, and rehabilitation programs. These data are commonly processed in musculoskeletal modeling platforms such as OpenSim and Anybody to estimate muscle and joint reaction forces during activity. However, the processing required to obtain musculoskeletal estimates can be time consuming, requires significant expertise, and thus seriously limits the patient populations studied. Accordingly, the purpose of this study was to evaluate the potential of
Quantitative ultrasound (QUS) is a promising tool to estimate bone structure characteristics and predict fragile fracture. The aim of this pilot cross-sectional study was to evaluate the performance of a multi-channel residual network (MResNet) based on ultrasonic radiofrequency (RF) signal to discriminate fragile fractures retrospectively in postmenopausal women. Methods. RF signal and speed of sound (SOS) were obtained using an axial transmission QUS at one‐third distal radius for 246 postmenopausal women. Based on the involved RF signal, we conducted a MResNet, which combines multi-channel training with original ResNet, to classify the high risk of fragility fractures patients from all subjects. The bone mineral density (BMD) at lumber, hip and femoral neck acquired with DXA was recorded on the same day. The fracture history of all subjects in adulthood were collected. To assess the ability of the different methods in the discrimination of fragile fracture, the odds ratios (OR) calculated using binomial logistic regression analysis and the area under the receiver operator characteristic curves (AUC) were analyzed. Results. Among the 246 postmenopausal women, 170 belonged to the non-fracture group, 50 to the vertebral group, and 26 to the non-vertebral fracture group. MResNet was discriminant for all fragile fractures (OR = 2.64; AUC = 0.74), for Vertebral fracture (OR = 3.02; AUC = 0.77), for non-vertebral fracture (OR = 2.01; AUC = 0.69). MResNet showed comparable performance to that of BMD of hip and lumbar with all types of fractures, and significantly better performance than SOS all types of fractures. Conclusions. the MResNet model based on the ultrasonic RF signal can significantly improve the ability of QUS device to recognize previous fragile fractures. Moreover, the performance of the proposed model modified by age, weight, and height is further optimized. These results open perspectives to evaluate the risk of fragile fracture applying a
Introduction. The ability to walk over various surfaces such as cobblestones, slopes or stairs is a very patient centric and clinically meaningful mobility outcome. Current wearable sensors only measure step counts or walking speed regardless of such context relevant for assessing gait function. This study aims to improve
The aim of this study was to develop and evaluate a deep learning-based model for classification of hip fractures to enhance diagnostic accuracy. A retrospective study used 5,168 hip anteroposterior radiographs, with 4,493 radiographs from two institutes (internal dataset) for training and 675 radiographs from another institute for validation. A convolutional neural network (CNN)-based classification model was trained on four types of hip fractures (Displaced, Valgus-impacted, Stable, and Unstable), using DAMO-YOLO for data processing and augmentation. The model’s accuracy, sensitivity, specificity, Intersection over Union (IoU), and Dice coefficient were evaluated. Orthopaedic surgeons’ diagnoses served as the reference standard, with comparisons made before and after artificial intelligence assistance.Aims
Methods
Aims. Distal femoral resection in conventional total knee arthroplasty (TKA) utilizes an intramedullary guide to determine coronal alignment, commonly planned for 5° of valgus. However, a standard 5° resection angle may contribute to malalignment in patients with variability in the femoral anatomical and mechanical axis angle. The purpose of the study was to leverage
Dislocation is a common complication following total hip arthroplasty (THA), and accounts for a high percentage of subsequent revisions. The purpose of this study was to develop a convolutional neural network (CNN) model to identify patients at high risk for dislocation based on postoperative anteroposterior (AP) pelvis radiographs. We retrospectively evaluated radiographs for a cohort of 13,970 primary THAs with 374 dislocations over 5 years of follow-up. Overall, 1,490 radiographs from dislocated and 91,094 from non-dislocated THAs were included in the analysis. A CNN object detection model (YOLO-V3) was trained to crop the images by centering on the femoral head. A ResNet18 classifier was trained to predict subsequent hip dislocation from the cropped imaging. The ResNet18 classifier was initialized with ImageNet weights and trained using FastAI (V1.0) running on PyTorch. The training was run for 15 epochs using ten-fold cross validation, data oversampling and augmentation.Background
Methods
Foot pain and related problems are quite common in the community. It is reported that 24% of individuals older than 45 experienced foot pain. Also, it is stated that at least two thirds of individuals experiences moderate physical disability due to foot problems. In the absence of evaluation of risk factors such as limited ankle dorsiflexion in the early period of the diseases (Plantar fasciitis, Achilles Tendinopathy e.g.) and the lack of mobile systems with portable remote access, foot pain becomes refractory/chronic foot pain, secondary pathologies and ends with workload of 1., 2. and 3rd level healthcare services. In the literature, manuel and dijital methods have been used to analyze the ankle range of motion (ROM). These studies are generally based on placing protractors on the image and / or angle detection from inclination measurement by using the gyroscope sensor of the mobile device. Some of these applications are effective and they are designed to be suitable for measuring in a clinical setting by a physician or physiotherapist. To the best of our knowledge, there is no system developed to measure real-time ankle ROM remotely with collaboration of the patients. In this research, we proposed to develop an ankle ROM analyze system with smart phone application that can be used comfortably by subjects. We present a case of a 22-year-old male with a symptomatic pes planus. The mobile application, which was used for data collection, was designed and implemented for Android devices. Initially, before the mobile application home page is opened, a consent page was submitted to the acceptance of individual within the scope of Law (KVKK) data privacy. Then, the participant was asked to state his sociodemographic characteristics [age, gender, height, weight] and dominant side. No history of foot-ankle injury, trauma, and surgery was recorded. Activity pain of the foot was 6 according to visual anolog scale (VAS) in the mobile application. His ankle dorsiflexion was 15 ° by manuel goniometer. Besides, server was responsible for storing the collected data and ROM measurement. ROM was calculated by processing the foot video which was sent through the mobile application. During the processing phase, a segmentation model was used which was trained with image process and
Aims. The diagnosis of developmental dysplasia of the hip (DDH) is challenging owing to extensive variation in paediatric pelvic anatomy. Artificial intelligence (AI) may represent an effective diagnostic tool for DDH. Here, we aimed to develop an anteroposterior pelvic radiograph
The October 2023 Children’s orthopaedics Roundup. 360. looks at: Outcomes of open reduction in children with developmental hip dislocation: a multicentre experience over a decade; A torn discoid lateral meniscus impacts lower-limb alignment regardless of age; Who benefits from allowing the physis to grow in slipped capital femoral epiphysis?; Consensus guidelines on the management of musculoskeletal infection affecting children in the UK; Diagnosis of developmental dysplasia of the hip by ultrasound imaging using
The October 2023 Spine Roundup. 360. looks at: Cutting through surgical smoke: the science of cleaner air in spinal operations; Unlocking success: key factors in thoracic spine decompression and fusion for ossification of the posterior longitudinal ligament;
Patients with advanced cancer can develop bone metastases in the femur which are often painful and increase the risk of pathological fracture. Accurate segmentation of bone metastases is, amongst others, important to improve patient-specific computer models which calculate fracture risk, and for radiotherapy planning to determine exact radiation fields.