Advertisement for orthosearch.org.uk
Results 1 - 20 of 447
Results per page:
The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1093 - 1099
1 Oct 2024
Ferreira GF Lewis TL Fernandes TD Pedroso JP Arliani GG Ray R Patriarcha VA Filho MV

Aims. A local injection may be used as an early option in the treatment of Morton’s neuroma, and can be performed using various medications. The aim of this study was to compare the effects of injections of hyaluronic acid compared with corticosteroid in the treatment of this condition. Methods. A total of 91 patients were assessed for this trial, of whom 45 were subsequently included and randomized into two groups. One patient was lost to follow-up, leaving 22 patients (24 feet) in each group. The patients in the hyaluronic acid group were treated with three ultrasound-guided injections (one per week) of hyaluronic acid (Osteonil Plus). Those in the corticosteroid group were treated with three ultrasound-guided injections (also one per week) of triamcinolone (Triancil). The patients were evaluated before treatment and at one, three, six, and 12 months after treatment. The primary outcome measure was the visual analogue scale for pain (VAS). Secondary outcome measures included the American Orthopaedic Foot and Ankle Society (AOFAS) score, and complications. Results. Both groups showed significant improvement in VAS and AOFAS scores (p < 0.05) after 12 months. The corticosteroid group had a significantly greater reduction in VAS and increase in AOFAS scores compared with the hyaluronic acid group, at one, three, and six months, but with no significant difference at 12 months. There were no complications in the hyaluronic acid group. There were minor local complications in six patients (six feet) (25.0%) in the corticosteroid group, all with discolouration of the skin at the site of the injection. These minor complications might have been due to the three weekly injections of a relatively high dose of corticosteroid. No patient subsequently underwent excision of the neuroma. Conclusion. An ultrasound-guided corticosteroid injection showed statistically significantly better functional and pain outcomes than an ultrasound-guided injection of hyaluronic acid for the treatment of a Morton’s neuroma at many timepoints. Thus, a corticosteroid injection should be regarded as a primary option in the treatment of these patients, and the only indication for an injection of hyaluronic acid might be in patients in whom corticosteroid is contraindicated. Cite this article: Bone Joint J 2024;106-B(10):1093–1099


Aims. There is conflicting evidence on the safety of intra-articular injections of hyaluronic acid (HA) or corticosteroids (CSs) before total knee arthroplasty (TKA). We performed a meta-analysis of the relationship between intra-articular injections and subsequent infection rates after TKA. Methods. We searched PubMed, EMBASE, and the Cochrane Library for cohort studies that assessed the effect of preoperative injection of drugs into the joint cavity on the infection rate after TKA. The outcomes analyzed included the total infection rate, as well as those for different preoperative injection time periods and different drugs. Results. Eight studies, including 73,880 in the injection group and 126,187 in the control group, met the inclusion criteria. The injection group had a significantly higher postoperative infection rate than the control group (risk ratio (RR) 1.16; 95% confidence interval (CI) 1.07 to 1.27; p < 0.001; I. 2. = 32%). For patients who received injections up to three months preoperatively, the postoperative infection risk was significantly higher than that in the control group (RR 1.26; 95% CI 1.18 to 1.35; p<0.001; I. 2. = 0%). There was no significant difference in the infection rates between the four-to-six-month injection and control groups (RR 1.12; 95% CI 0.93 to 1.35; p = 0.240; I. 2. = 75%) or between the seven-to-12-month injection and control groups (RR 1.02; 95% CI 0.94 to 1.12; p = 0.600; I. 2. = 0%). Conclusion. Current evidence suggests that intra-articular injections of CSs or HA before TKA increase the risk of postoperative infection. Injections administered more than three months before TKA do not significantly increase the risk of infection. Cite this article: Bone Joint Res 2022;11(3):171–179


The Bone & Joint Journal
Vol. 104-B, Issue 5 | Pages 620 - 626
1 May 2022
Stadecker M Gu A Ramamurti P Fassihi SC Wei C Agarwal AR Bovonratwet P Srikumaran U

Aims. Corticosteroid injections are often used to manage glenohumeral arthritis in patients who may be candidates for future total shoulder arthroplasty (TSA) or reverse shoulder arthroplasty (rTSA). In the conservative management of these patients, corticosteroid injections are often provided for symptomatic relief. The purpose of this study was to determine if the timing of corticosteroid injections prior to TSA or rTSA is associated with changes in rates of revision and periprosthetic joint infection (PJI) following these procedures. Methods. Data were collected from a national insurance database from January 2006 to December 2017. Patients who underwent shoulder corticosteroid injection within one year prior to ipsilateral TSA or rTSA were identified and stratified into the following cohorts: < three months, three to six months, six to nine months, and nine to 12 months from time of corticosteroid injection to TSA or rTSA. A control cohort with no corticosteroid injection within one year prior to TSA or rTSA was used for comparison. Univariate and multivariate analyses were conducted to determine the association between specific time intervals and outcomes. Results. In total, 4,252 patients were included in this study. Among those, 1,632 patients (38.4%) received corticosteroid injection(s) within one year prior to TSA or rTSA and 2,620 patients (61.6%) did not. On multivariate analysis, patients who received corticosteroid injection < three months prior to TSA or rTSA were at significantly increased risk for revision (odds ratio (OR) 2.61 (95% confidence interval (CI) 1.77 to 3.28); p < 0.001) when compared with the control cohort. However, there was no significant increase in revision risk for all other timing interval cohorts. Notably, Charlson Comorbidity Index ≥ 3 was a significant independent risk factor for all-cause revision (OR 4.00 (95% CI 1.40 to 8.92); p = 0.036). Conclusion. There is a time-dependent relationship between the preoperative timing of corticosteroid injection and the incidence of all-cause revision surgery following TSA or rTSA. This analysis suggests that an interval of at least three months should be maintained between corticosteroid injection and TSA or rTSA to minimize risks of subsequent revision surgery. Cite this article: Bone Joint J 2022;104-B(5):620–626


The Bone & Joint Journal
Vol. 102-B, Issue 5 | Pages 586 - 592
1 May 2020
Wijn SRW Rovers MM van Tienen TG Hannink G

Aims. Recent studies have suggested that corticosteroid injections into the knee may harm the joint resulting in cartilage loss and possibly accelerating the progression of osteoarthritis (OA). The aim of this study was to assess whether patients with, or at risk of developing, symptomatic osteoarthritis of the knee who receive intra-articular corticosteroid injections have an increased risk of requiring arthroplasty. Methods. We used data from the Osteoarthritis Initiative (OAI), a multicentre observational cohort study that followed 4,796 patients with, or at risk of developing, osteoarthritis of the knee on an annual basis with follow-up available up to nine years. Increased risk for symptomatic OA was defined as frequent knee symptoms (pain, aching, or stiffness) without radiological evidence of OA and two or more risk factors, while OA was defined by the presence of both femoral osteophytes and frequent symptoms in one or both knees. Missing data were imputed with multiple imputations using chained equations. Time-dependent propensity score matching was performed to match patients at the time of receving their first injection with controls. The effect of corticosteroid injections on the rate of subsequent (total and partial) knee arthroplasty was estimated using Cox proportional-hazards survival analyses. Results. After removing patients lost to follow-up, 3,822 patients remained in the study. A total of 249 (31.3%) of the 796 patients who received corticosteroid injections, and 152 (5.0%) of the 3,026 who did not, had knee arthroplasty. In the matched cohort, Cox proportional-hazards regression resulted in a hazard ratio of 1.57 (95% confidence interval (CI) 1.37 to 1.81; p < 0.001) and each injection increased the absolute risk of arthroplasty by 9.4% at nine years’ follow-up compared with those who did not receive injections. Conclusion. Corticosteroid injections seem to be associated with an increased risk of knee arthroplasty in patients with, or at risk of developing, symptomatic OA of the knee. These findings suggest that a conservative approach regarding the treatment of these patients with corticosteroid injections should be recommended. Cite this article: Bone Joint J 2020;102-B(5):586–592


Bone & Joint Open
Vol. 1, Issue 11 | Pages 709 - 714
5 Nov 2020
Finsen V Kalstad AM Knobloch RG

Aims. We aimed to establish the short- and long-term efficacy of corticosteroid injection for coccydynia, and to determine if betamethasone or triamcinolone has the best effect. Methods. During 2009 to 2016, we treated 277 patients with chronic coccydynia with either one 6 mg betamethasone or one 20 mg triamcinolone cortisone injection. A susequent injection was given to 62 (26%) of the patients. All were reviewed three to four months after injection, and 241 replied to a questionnaire a mean of 36 months (12 to 88) after the last injection. No pain at the early review was considered early success. When the patient had not been subsequently operated on, and indicated on the questionnaire that they were either well or much better, it was considered a long-term success. Results. At the three- to four-month review, 22 (9%) reported that they had no pain. The long-term success of one injection was 15% and rose to 29% after a second injection. Logistic regression tests showed that both early success (odds ratio (OR) 5.5, 95% confidence interval (CI) 2.1 to 14.4; p = 0.001) and late success (OR 3.7, 95% CI 1.7 to 8.3; p = 0.001) was greater with triamcinolone than with betamethasone. Late success was greater for patients with symptoms for less than 12 months (OR 3.0, 95% CI 1.4 to 6.7; p = 0.006). We saw no complications of the injections. Conclusion. We conclude that the effect of corticosteroid injection for coccygodynia is moderate, possibly because we used modest doses of the drugs. Even so, they seem worthwhile as they are easily and quickly performed, and complications are rare. If the choice is between injections of betamethasone or triamcinolone, the latter should be selected. Cite this article: Bone Joint Open 2020;1-11:709–714


Bone & Joint Open
Vol. 1, Issue 9 | Pages 605 - 611
28 Sep 2020
McKean D Chung SL Fairhead R Bannister O Magliano M Papanikitas J Wong N Hughes R

Aims. To describe the incidence of adverse clinical outcomes related to COVID-19 infection following corticosteroid injections (CSI) during the COVID-19 pandemic. To describe the incidence of positive SARS-CoV-2 reverse transcriptase polymerase chain reaction (RT-PCR) testing, positive SARS-COV2 IgG antibody testing or positive imaging findings following CSI at our institution during the COVID-19 pandemic. Methods. A retrospective observational study was undertaken of consecutive patients who had CSI in our local hospitals between 1 February and 30June 2020. Electronic patient medical records (EPR) and radiology information system (RIS) database were reviewed. SARS-CoV-2 RT-PCR testing, SARS-COV2 IgG antibody testing, radiological investigations, patient management, and clinical outcomes were recorded. Lung findings were categorized according to the British Society of Thoracic Imaging (BSTI) guidelines. Reference was made to the incidence of lab-confirmed COVID-19 cases in our region. Results. Overall, 1,656 lab-confirmed COVID-19 cases were identified in our upper tier local authority (UTLA), a rate of 306.6 per 100,000, as of 30June 2020. A total of 504 CSI injections were performed on 443 patients between 1 February and 30June 2020. A total of 11 RT-PCR tests were performed on nine patients (2% of those who had CSI), all of which were negative for SARS-CoV-2 RNA, and five patients (1.1%) received an SARS-CoV-2 IgG antibody test, of which 2 (0.5%) were positive consistent with prior COVID-19 infection, however both patients were asymptomatic. Seven patients (1.6%) had radiological investigations for respiratory symptoms. One patient with indeterminate ground glass change was identified. Conclusion. The incidence of positive COVID-19 infection following corticosteroid injections was very low in our cohort and no adverse clinical outcomes related to COVID-19 infection following CSI were identified. Our findings are consistent with CSI likely being low risk during the COVID-19 pandemic. The results of this small observational study are supportive of the current multi-society guidelines regarding the judicious use of CSI. Cite this article: Bone Joint Open 2020;1-9:605–611


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 35 - 35
24 Nov 2023
Pérez-Prieto D Baums M Aquilina J Sleiman O Geropoulos G Totlis T
Full Access

Purpose. Intra-articular corticosteroid injection is widely used for symptomatic relief of knee osteoarthritis. However, if pain is not improved which consequences a total knee arthroplasty (TKA), there is a potential risk of post-operative periprosthetic joint infection (PJI). The aim of this study is to investigate whether the use of preoperative intra-articular corticosteroid injection increases the risk of PJI and to investigate a time frame in which the risk of subsequent infection is significantly increased. Methods. A systematic search was performed in PubMed (Medline), Scopus, and the Cochrane Library. Inclusion criteria were original studies investigating the rate of PJI in patients receiving pre-operative intra-articular corticosteroid injection compared to controls. Results. A total of 380 unique articles were screened. Six studies met the inclusion criteria with 255,627 patients in total. Overall, no statistical significance was observed in the intra-articular infection rate in corticosteroid compared to controls groups. However, intra-articular corticosteroid injections within 3 months prior to TKA were associated with a significantly increased risk of infection (OR: 1.52, 95% CI 1.37–1.67, p < 0.01); this was not observed in the 6-month period (OR: 1.05, 95% CI 0.80–1.39, p = 0.72). Conclusions. Performing an intra-articular corticosteroid injection within 3 months prior to TKA is associated with a significantly increased risk of PJI. The current evidence supports the safe use of intra-articular corticosteroid injection more than 6 months before TKA. However, additional studies are needed to clarify the risk of PJI after TKA implantation between 3 and 6 months after the last corticoid injection


The Bone & Joint Journal
Vol. 103-B, Issue 2 | Pages 353 - 359
1 Feb 2021
Cho C Min B Bae K Lee K Kim DH

Aims. Ultrasound (US)-guided injections are widely used in patients with conditions of the shoulder in order to improve their accuracy. However, the clinical efficacy of US-guided injections compared with blind injections remains controversial. The aim of this study was to compare the accuracy and efficacy of US-guided compared with blind corticosteroid injections into the glenohumeral joint in patients with primary frozen shoulder (FS). Methods. Intra-articular corticosteroid injections were administered to 90 patients primary FS, who were randomly assigned to either an US-guided (n = 45) or a blind technique (n = 45), by a shoulder specialist. Immediately after injection, fluoroscopic images were obtained to assess the accuracy of the injection. The outcome was assessed using a visual analogue scale (VAS) for pain, the American Shoulder and Elbow Surgeons (ASES) score, the subjective shoulder value (SSV) and range of movement (ROM) for all patients at the time of presentation and at three, six, and 12 weeks after injection. Results. The accuracy of injection in the US and blind groups was 100% (45/45) and 71.1% (32/45), respectively; this difference was significant (p < 0.001). Both groups had significant improvements in VAS pain score, ASES score, SSV, forward flexion, abduction, external rotation, and internal rotation throughout follow-up until 12 weeks after injection (all p < 0.001). There were no significant differences between the VAS pain scores, the ASES score, the SSV and all ROMs between the two groups at the time points assessed (all p > 0.05). No injection-related adverse effects were noted in either group. Conclusion. We found no significant differences in pain and functional outcomes between the two groups, although an US-guided injection was associated with greater accuracy. Considering that it is both costly and time-consuming, an US-guided intra-articular injection of corticosteroid seems not always to be necessary in the treatment of FS as it gives similar outcomes as a blind injection. Cite this article: Bone Joint J 2021;103-B(2):353–359


Bone & Joint Open
Vol. 5, Issue 3 | Pages 162 - 173
4 Mar 2024
Di Mascio L Hamborg T Mihaylova B Kassam J Shah B Stuart B Griffin XL

Aims. Is it feasible to conduct a definitive multicentre trial in community settings of corticosteroid injections (CSI) and hydrodilation (HD) compared to CSI for patients with frozen shoulder? An adequately powered definitive randomized controlled trial (RCT) delivered in primary care will inform clinicians and the public whether hydrodilation is a clinically and cost-effective intervention. In this study, prior to a full RCT, we propose a feasibility trial to evaluate recruitment and retention by patient and clinician willingness of randomization; rates of withdrawal, crossover and attrition; and feasibility of outcome data collection from routine primary and secondary care data. Methods. In the UK, the National Institute for Health and Care Excellence (NICE) advises that prompt early management of frozen shoulder is initiated in primary care settings with analgesia, physiotherapy, and joint injections; most people can be managed without an operation. Currently, there is variation in the type of joint injection: 1) CSI, thought to reduce the inflammation of the capsule reducing pain; and 2) HD, where a small volume of fluid is injected into the shoulder joint along with the steroid, aiming to stretch the capsule of the shoulder to improve pain, but also allowing greater movement. The creation of musculoskeletal hubs nationwide provides infrastructure for the early and effective management of frozen shoulder. This potentially reduces costs to individuals and the wider NHS perhaps negating the need for a secondary care referral. Results. We will conduct a multicentre RCT comparing CSI and HD in combination with CSI alone. Patients aged 18 years and over with a clinical diagnosis of frozen shoulder will be randomized and blinded to receive either CSI and HD in combination, or CSI alone. Feasibility outcomes include the rate of randomization as a proportion of eligible patients and the ability to use routinely collected data for outcome evaluation. This study has involved patients and the public in the trial design, dissemination methods, and how to include groups who are underserved by research. Conclusion. We will disseminate findings among musculoskeletal clinicians via the British Orthopaedic Association, the Chartered Society of Physiotherapy, the Royal College of Radiologists, and the Royal College of General Practitioners. To ensure wide reach we will communicate findings through our established network of charities and organizations, in addition to preparing dissemination findings in Bangla and Urdu (commonly spoken languages in northeast London). If a full trial is shown to be feasible, we will seek additional National Institute for Health and Care Research funding for a definitive RCT. This definitive study will inform NICE guidelines for the management of frozen shoulder. Cite this article: Bone Jt Open 2024;5(3):162–173


The Bone & Joint Journal
Vol. 102-B, Issue 10 | Pages 1297 - 1302
3 Oct 2020
Kurosaka K Tsukada S Ogawa H Nishino M Nakayama T Yoshiya S Hirasawa N

Aims. Although periarticular injection plays an important role in multimodal pain management following total hip arthroplasty (THA), there is no consensus on the optimal composition of the injection. In particular, it is not clear whether the addition of a corticosteroid improves the pain relief achieved nor whether it is associated with more complications than are observed without corticosteroid. The aim of this study was to quantify the safety and effectiveness of cortocosteroid use in periarticular injection during THA. Methods. We conducted a prospective, two-arm, parallel-group, randomized controlled trial involving patients scheduled for unilateral THA. A total of 187 patients were randomly assigned to receive periarticular injection containing either a corticosteroid (CS group) or without corticosteroid (no-CS group). Other perioperative interventions were identical for all patients. The primary outcome was postoperative pain at rest during the initial 24 hours after surgery. Pain score was recorded every three hours until 24 hours using a 100 mm visual analogue scale (VAS). The primary outcome was assessed based on the area under the curve (AUC). Results. The CS group had a significantly lower AUC postoperatively at 0 to 24 hours compared to the no-CS group (AUC of VAS score at rest 550 ± 362 vs 392 ± 320, respectively; mean difference 158 mm; 95% confidence interval (CI) 58 to 257; p = 0.0021). In point-by-point evaluation, the CS group had significantly lower VAS scores at 12, 15, 18, 21, 24, and 48 hours. There were no significant differences in complication rates, including surgical site infection, between the two groups. Conclusion. The addition of corticosteroid to periarticular injections reduces postoperative pain without increasing complication rate following THA. Cite this article: Bone Joint J 2020;102-B(10):1297–1302


Bone & Joint Open
Vol. 2, Issue 11 | Pages 926 - 931
9 Nov 2021
Houdek MT Wyles CC Smith JH Terzic A Behfar A Sierra RJ

Aims. Bone marrow-derived mesenchymal stem cells obtained from bone marrow aspirate concentrate (BMAC) with platelet-rich plasma (PRP), has been used as an adjuvant to hip decompression. Early results have shown promise for hip preservation in patients with osteonecrosis (ON) of the femoral head. The purpose of the current study is to examine the mid-term outcome of this treatment in patients with precollapse corticosteroid-induced ON of the femoral head. Methods. In all, 22 patients (35 hips; 11 males and 11 females) with precollapse corticosteroid-induced ON of the femoral head underwent hip decompression combined with BMAC and PRP. Mean age and BMI were 43 years (SD 12) and 31 kg/m² (SD 6), respectively, at the time of surgery. Survivorship free from femoral head collapse and total hip arthroplasty (THA) and risk factors for progression were evaluated at minimum five-years of clinical follow-up with a mean follow-up of seven years (5 to 8). Results. Survivorship free from femoral head collapse and THA for any reason was 84% and 67% at seven years postoperatively, respectively. Risk factors for conversion to THA included a high preoperative modified Kerboul angle (grade 3 or 4) based on preoperative MRI (hazard ratio (HR) 3.96; p = 0.047) and corticosteroid use at the time of decompression (HR 4.15; p = 0.039). The seven-year survivorship for patients with grade 1 or 2 Kerboul angles for conversion to THA for articular collapse, and THA for any reason, were 96% and 72%, respectively, versus THA for articular collapse and THA for any reason in patients with grade 3 or 4 Kerboul angles of 40% (p = 0.003) and 40% (p = 0.032). Conclusion. At seven years, hip decompression augmented with BMAC and PRP provided a 67% survivorship free from THA in patients with corticosteroid-induced ON. Ideal candidates for this procedure are patients with low preoperative Kerboul angles and can stop corticosteroid treatment prior to decompression. Cite this article: Bone Jt Open 2021;2(11):926–931


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_13 | Pages 11 - 11
17 Jun 2024
Lewis T Ferreira G Nunes G Ray R
Full Access

Background. Infiltration is considered the first treatment option for symptomatic Morton's neuroma and can be performed with various medications. The aim of this study was to compare the effects of hyaluronic acid infiltration versus corticosteroid injection in the treatment of Morton's neuroma. Methods. A randomised clinical trial was conducted with 46 patients (50 feet) diagnosed with Morton's neuroma. After randomisation, the control group (CG) received three injections (one per week) of triamcinolone (Triancil®) guided by ultrasound, while the study group (SG) received three applications of hyaluronic acid (Osteonil Plus®). Patients were followed up for six months after the intervention. The primary outcome measure used was the Visual Pain Analog Scale (VAS). Secondary endpoints included patient-reported outcome measures using the American Orthopaedic Foot & Ankle Society (AOFAS) score and complications. Results. Both groups showed significant improvement in VAS and AOFAS scores (p < 0.001). The CG showed greater improvement than the SG in the VAS (p < 0.05) and AOFAS (p < 0.001) variables. Four patients in the CG experienced skin hypochromia at the injection site, while there were no complications in the SG. Conclusion. Ultrasound-guided hyaluronic acid infiltration in Morton's Neuroma proved to be safe, showing improvement in pain and function after six months of follow-up, without major complications, but with a significantly lower improvement when compared to corticosteroid injection. Taking into account cost implications and the potential for longer lasting improvement from viscosupplementation further medium- and long-term studies are needed


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 9 | Pages 1246 - 1252
1 Sep 2012
Penning LIF de Bie RA Walenkamp GHIM

A total of 159 patients (84 women and 75 men, mean age of 53 (20 to 87)) with subacromial impingement were randomised to treatment with subacromial injections using lidocaine with one of hyaluronic acid (51 patients), corticosteroid (53 patients) or placebo (55 patients). Patients were followed up for 26 weeks. The primary outcome was pain on a visual analogue score (VAS), and secondary outcomes included the Constant Murley score, shoulder pain score, functional mobility score, shoulder disability questionnaire and pain-specific disability score. The different outcome measures showed similar results. After three, six and 12 weeks corticosteroid injections were superior to hyaluronic acid injections and only at six weeks significantly better than placebo injections. The mean short-term reduction in pain on the VAS score at 12 weeks was 7% (. sd. 2.7; 97.5% confidence interval (CI) 0.207 to 1.55; p = 0.084) in the hyaluronic acid group, 28% (. sd. 2.8; 97.5% CI 1.86 to 3.65; p < 0.001) in the corticosteroid group and 23% (. sd. 3.23; 97.5% CI 1.25 to 3.26; p < 0.001) in the placebo group. At 26 weeks there was a reduction in pain in 63% (32 of 51) of patients in the hyaluronic acid group, 72% (38 of 53) of those in the corticosteroid group and 69% (38 of 55) of those in the placebo group. We were not able to show a convincing benefit from hyaluronic acid injections compared with corticosteroid or placebo injections. Corticosteroid injections produced a significant reduction in pain in the short term (three to 12 weeks), but in the long term the placebo injection produced the best results


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 93 - 93
10 Feb 2023
Wang A Hughes J Fitzpatrick J Breidhahl W Ebert J Zheng M
Full Access

Interstitial supraspinatus tears can cause persistent subacromial impingement symptoms despite non operative treatment. Autologous tendon cell injection (ATI) is a non-surgical treatment for tendinopathies and tear. We report a randomised controlled study of ATI compared to corticosteroid injection (CS) as treatment for interstitial supraspinatus tears and tendinopathy. Inclusion criteria were patients with symptom duration > 6 months, MRI confirmed intrasubstance supraspinatus tear, and prior treatment with physiotherapy and ≥ one CS or PRP injection. Participants were randomised to receive ATI to the interstitial tear or corticosteroid injection to the subacromial bursa in a 2:1 ratio, under ultrasound guidance. Assessments of pain (VAS) and function (ASES) were performed at baseline, and 1, 3, 6 and 12 months post treatment. 30 participants (19 randomised to ATI) with a mean age of 50.5 years (10 females) and a mean duration of symptoms of 23.5 months. Baseline VAS pain and ASES scores were comparable between groups. While mean VAS pain scores improved in both groups at 3 months after treatment, pain scores were superior with ATI at 6 months (p=0.01). Mean ASES scores in the ATI group were superior to the CS group at 3 months (p=0.026) and 6 months (p=0.012). Seven participants in the CS group withdrew prior to 12 months due to lack of improvement. At 12 months, mean VAS pain in the ATI group was 1.6 ± 1.3. The improvements in mean ASES scores in the ATI group at 6 and 12 months were greater than the MCID (12.0 points). At 12 months, 95% of ATI participants had an ASES score > the PASS (patient acceptable symptom state). This is the first level one study using ATI to treat interstitial supraspinatus tear. ATI results in a significant reduction in pain and improvement in shoulder function


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 27 - 27
1 Dec 2021
Edwards T Donovan R Whitehouse M
Full Access

Abstract. Objectives. Intra-articular corticosteroid injections (IACIs) are a well-established non-surgical treatment for the symptoms of osteoarthritis (OA), which can provide short-term improvements in pain, disability and quality of life (QoL). Many patients receive recurrent IACIs as temporary relief of their symptoms. Longer-term outcomes for recurrent IACIs remain less well-researched. This meta-analysis aimed to investigate the longer-term risks and benefits of IACIs beyond 3 months. Methods. We searched MEDLINE, EMBASE, and CENTRAL from inception to January 07, 2021, for randomised controlled trials (RCTs) where patients with OA had received recurrent IACIs. Our primary outcomes were pain and function. Secondary outcomes included QoL, disease progression, radiological changes, and adverse events. Mean differences with 95% confidence intervals were reported. Results. Ten RCTs met eligibility criteria (eight for knee OA [n=378], two for trapeziometacarpal OA [n=57]). Patients received 2–5 injections. Follow-up ranged from 6–24 months. Patients with knee OA showed mild improvement in pain at 3, 6, and 9 months but not at 12 months post-injection compared to baseline. Improvements in function were seen from 3–24 months post-injection, decreasing over time. Improvements in QoL continued at 24 months. For patients with trapeziometacarpal OA, mild improvements in pain, function, and QoL were demonstrated at 3–6 months (and 12 months for pain) compared to baseline. No serious adverse events were recorded. No studies reported on time-to-future interventions, or risk of future periprosthetic joint infection. Conclusions. Only mild improvements in pain, function, and QoL were noted after recurrent IACIs up to 6–24 months post-injection. Existing RCTs on recurrent IACI lacks sufficient follow-up data to assess disease progression and time-to-future interventions. These results will inform the RecUrrent Intra-articular Corticosteroid injections in Osteoarthritis (RUbICOn) study which aims to establish the long-term safety outcomes of IACI through data linkage of clinical practice data, hospital episode statistics, and national PROMs


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 83 - 83
1 Nov 2018
Flynn S O'Reilly M Feeley I Sheehan E
Full Access

Knee osteoarthritis is a common, debilitating condition. Intra articular corticosteroid injections are a commonly used non-operative treatment strategy. Intra articular hip injection with Ketorolac (an NSAID) has proven to be as efficacious as corticosteroids. No prior study compares the efficacy of Ketorolac relative to corticosteroids for relief of discomfort in knee osteoarthritis. The study design was a single centre double blinded RCT. Severity of osteoarthritic changes were graded on plain film weightbearing radiographs using the Kellgren and Lawrence system. Injection was with either 30mg Ketorolac or 40mg Methylprednisolone, given by intra-articular injection, in a syringe with 5mls 0.5% Marcaine. Pre-injection clinical outcomes were assessed using the Numerical Pain Score (NPS), WOMAC, and Oxford knee scores. Patients' NPS scores were assessed at Day 1 and Day 14 post-injection. An assessment of all clinical outcomes took place in clinic at six weeks. There were 72 participants (83 knees) in the study. No patients were lost to follow-up. Mean age was 62.66 years (Range 29–85). 42 knees received a corticosteroid injection, 41 a NSAID injection. Mean Kellgren and Lawrence score was 3.1. There was no significant difference in pre-injection clinical scores in either group. There was a significant improvement of NPS on Day 1 and 14 in both injection groups(p<0.05). These improved pain scores were sustained at 6 weeks in both groups. WOMAC and Oxford Knee Scores showed a statistically significant improvement in the corticosteroid group. WOMAC scores showed significant improvement in the NSAID group, however these improvements didn't achieve statistical significance using the Oxford Knee Score. Corticosteroid or NSAID injectate are a safe and effective non-operative treatment strategy in the patient with knee osteoarthritis. Ketorolac appears to provide effective medium-term improvement of pain and clinical scores. Further follow-up is recommended to investigate if this trend in sustained


Bone & Joint Open
Vol. 5, Issue 7 | Pages 534 - 542
1 Jul 2024
Woods A Howard A Peckham N Rombach I Saleh A Achten J Appelbe D Thamattore P Gwilym SE

Aims. The primary aim of this study was to assess the feasibility of recruiting and retaining patients to a patient-blinded randomized controlled trial comparing corticosteroid injection (CSI) to autologous protein solution (APS) injection for the treatment of subacromial shoulder pain in a community care setting. The study focused on recruitment rates and retention of participants throughout, and collected data on the interventions’ safety and efficacy. Methods. Participants were recruited from two community musculoskeletal treatment centres in the UK. Patients were eligible if aged 18 years or older, and had a clinical diagnosis of subacromial impingement syndrome which the treating clinician thought was suitable for treatment with a subacromial injection. Consenting patients were randomly allocated 1:1 to a patient-blinded subacromial injection of CSI (standard care) or APS. The primary outcome measures of this study relate to rates of recruitment, retention, and compliance with intervention and follow-up to determine feasibility. Secondary outcome measures relate to the safety and efficacy of the interventions. Results. A total of 53 patients were deemed eligible, and 50 patients (94%) recruited between April 2022 and October 2022. Overall, 49 patients (98%) complied with treatment. Outcome data were collected in 100% of participants at three months and 94% at six months. There were no significant adverse events. Both groups demonstrated improvement in patient-reported outcome measures over the six-month period. Conclusion. Our study shows that it is feasible to recruit to a patient-blinded randomized controlled trial comparing APS and CSI for subacromial pain in terms of clinical outcomes and health-resource use in the UK. Safety and efficacy data are presented. Cite this article: Bone Jt Open 2024;5(7):534–542


The Bone & Joint Journal
Vol. 98-B, Issue 4 | Pages 498 - 503
1 Apr 2016
Mahadevan D Attwal M Bhatt R Bhatia M

Aims. The objective of this double-blind randomised controlled trial was to assess whether ultrasound guidance improved the efficacy of corticosteroid injections for Morton’s neuroma (MN). . Patients and Methods. In all, 50 feet (40 patients) were recruited for this study but five feet were excluded due to the patients declining further participation. The mean age of the remaining 36 patients (45 feet) was 57.8 years (standard deviation (. sd. ) 12.9) with a female preponderance (33F:12M). All patients were followed-up for 12 months. Treatment was randomised to an ultrasound guided (Group A) or non-ultrasound guided (Group B) injection of 40 mg triamcinolone acetonide and 2 ml 1% lignocaine, following ultrasound confirmation of the diagnosis. . Results. The mean visual analogue score for pain improved significantly in both groups (Group A – from 64 mm, . sd. 25 mm to 29 mm, . sd. 27; Group B – from 69 mm, . sd. 23 mm to 37 mm, . sd. 25) with no statistical difference between them at all time-points. The failure rate within 12 months of treatment was 11/23 (48%) and 12/22 (55%) in Groups A and B, respectively (p = 0.458). The improvement in Manchester Oxford Foot Questionnaire Index and patient satisfaction favoured Group A in the short-term (three months) that almost reached statistical significance (p = 0.059 and 0.066 respectively). However, this difference was not observed beyond three months. . Conclusion. This study has shown that ultrasound guidance did not demonstrably improve the efficacy of corticosteroid injections in patients with MN. Take home message: In the presence of a clear diagnosis of MN, a trained clinician who understands the forefoot anatomy may perform an injection without ultrasound guidance with good and safe results. Cite this article: Bone Joint J 2016;98-B:498–503


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 120 - 120
1 Nov 2021
Gregori P Singh A Harper T Franceschi F Blaber O Horneff JG
Full Access

Introduction and Objective. Total shoulder replacement is a common elective procedure offered to patients with end stage arthritis. While most patients experience significant pain relief and improved function within months of surgery, some remain unsatisfied because of residual pain or dissatisfaction with their functional status. Among these patients, when laboratory workup eliminates infection as a possibility, corticosteroid injection (CSI) into the joint space, or on the periprosthetic anatomic structures, is a common procedure used for symptom management. However, the efficacy and safety of this procedure has not been previously reported in shoulder literature. Materials and Methods. A retrospective chart review identified primary TSA patients who subsequently received a CSI into a replaced shoulder from 2011 – 2018 by multiple surgeons. Patients receiving an injection underwent clinical exam, laboratory analysis to rule out infection, and radiographic evaluation prior to CSI. Demographic variables were recorded, and a patient satisfaction survey assessed the efficacy of the injection. Results. Of the 43 responders, 48.8% remembered the injection. The average time from index arthroplasty to injection was median 16.8 months. Overall, 61.9% reported decreased pain, 28.6% reported increased motion, and 28.6% reported long term decreased swelling. Improvement lasted greater than one month for 42.9% of patients, and overall 52.4% reported improvement (slight to great) in the shoulder following CSI. No patient developed a periprosthetic joint infection (PJI) within 2 years of injection. Conclusions. This study suggests that certain patients following TSA may benefit from a CSI. However, this should only be performed once clinical, radiographic, and laboratory examination has ruled out conditions unlikely to improve long term from a CSI. Given these findings, further study in a large, prospective trial is warranted to fully evaluate the benefits of CSI following TSA


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 41 - 41
1 Apr 2017
Dolkart O Yehuda H Zarfati Y Brosh T Chechik O Maman E
Full Access

Background. The effect of corticosteroids on tendon properties is poorly understood, and current data are insufficient and conflicting. The objective of this study was to evaluate the effects of corticosteroids injection on intact and injured rotator cuff (RC) through biomechanical and radiographic analyses in a rat model. Methods. 70 rats were assigned to seven groups:1)control - saline injection;2) no tear + single methylprednisolone acetate (MTA) injection; 3) no tear + triple MTA injection; 4) tear + single saline injection; 5) tear + single MTA injection; 6) tear+ triple saline injections; 7) tear+ triple MTA injections. Triple injections were repeated once a week. Following unilateral supraspinatus (SSP) injuries, MTA was injected subacromialy. Rats were sacrificed 1 week after last injection. Shoulders were harvested, grossly inspected, SSP was evaluated biomechanically. Bone density at the tendon insertion site on the greater tuberosity (GT) were assessed with micro-computed tomography (CT). Results. Exposure of the intact RC to the triple MTA injection resulted in significant decrease in maximal load and stiffness as compared to control group (p<0.05). In the injured tendons, at three week, steroids treated group presented with a significantly lower maximal load compared to the saline treated rats (p<0.01). Stiffness was slightly lower in the steroids treated group at three weeks (p=0.1). Micro-CT analysis showed significantly lower GT volume fraction and connectivity density in undamaged rats following triple MTA injection. Conclusions. Repeated dose of corticosteroids significantly weakens rat RC. Repeated MTA injections negatively affect bone quality and may deteriorate tendon to bone insertion site. However, data retrieved from animals must be scrupulously analysed prior to extrapolation to humans. Despite the limitations, our results clearly show a significant detrimental effect of corticosteroid exposure on the injured rat RC tendon biomechanics. These effects should be well thought-out against any potential benefit prior to administering a subacromial corticosteroid injection