Advertisement for orthosearch.org.uk
Results 1 - 20 of 97
Results per page:
Bone & Joint Research
Vol. 12, Issue 5 | Pages 313 - 320
8 May 2023
Saiki Y Kabata T Ojima T Kajino Y Kubo N Tsuchiya H

Aims. We aimed to assess the reliability and validity of OpenPose, a posture estimation algorithm, for measurement of knee range of motion after total knee arthroplasty (TKA), in comparison to radiography and goniometry. Methods. In this prospective observational study, we analyzed 35 primary TKAs (24 patients) for knee osteoarthritis. We measured the knee angles in flexion and extension using OpenPose, radiography, and goniometry. We assessed the test-retest reliability of each method using intraclass correlation coefficient (1,1). We evaluated the ability to estimate other measurement values from the OpenPose value using linear regression analysis. We used intraclass correlation coefficients (2,1) and Bland–Altman analyses to evaluate the agreement and error between radiography and the other measurements. Results. OpenPose had excellent test-retest reliability (intraclass correlation coefficient (1,1) = 1.000). The R. 2. of all regression models indicated large correlations (0.747 to 0.927). In the flexion position, the intraclass correlation coefficients (2,1) of OpenPose indicated excellent agreement (0.953) with radiography. In the extension position, the intraclass correlation coefficients (2,1) indicated good agreement of OpenPose and radiography (0.815) and moderate agreement of goniometry with radiography (0.593). OpenPose had no systematic error in the flexion position, and a 2.3° fixed error in the extension position, compared to radiography. Conclusion. OpenPose is a reliable and valid tool for measuring flexion and extension positions after TKA. It has better accuracy than goniometry, especially in the extension position. Accurate measurement values can be obtained with low error, high reproducibility, and no contact, independent of the examiner’s skills. Cite this article: Bone Joint Res 2023;12(5):313–320


Bone & Joint Open
Vol. 3, Issue 10 | Pages 767 - 776
5 Oct 2022
Jang SJ Kunze KN Brilliant ZR Henson M Mayman DJ Jerabek SA Vigdorchik JM Sculco PK

Aims. Accurate identification of the ankle joint centre is critical for estimating tibial coronal alignment in total knee arthroplasty (TKA). The purpose of the current study was to leverage artificial intelligence (AI) to determine the accuracy and effect of using different radiological anatomical landmarks to quantify mechanical alignment in relation to a traditionally defined radiological ankle centre. Methods. Patients with full-limb radiographs from the Osteoarthritis Initiative were included. A sub-cohort of 250 radiographs were annotated for landmarks relevant to knee alignment and used to train a deep learning (U-Net) workflow for angle calculation on the entire database. The radiological ankle centre was defined as the midpoint of the superior talus edge/tibial plafond. Knee alignment (hip-knee-ankle angle) was compared against 1) midpoint of the most prominent malleoli points, 2) midpoint of the soft-tissue overlying malleoli, and 3) midpoint of the soft-tissue sulcus above the malleoli. Results. A total of 932 bilateral full-limb radiographs (1,864 knees) were measured at a rate of 20.63 seconds/image. The knee alignment using the radiological ankle centre was accurate against ground truth radiologist measurements (inter-class correlation coefficient (ICC) = 0.99 (0.98 to 0.99)). Compared to the radiological ankle centre, the mean midpoint of the malleoli was 2.3 mm (SD 1.3) lateral and 5.2 mm (SD 2.4) distal, shifting alignment by 0.34. o. (SD 2.4. o. ) valgus, whereas the midpoint of the soft-tissue sulcus was 4.69 mm (SD 3.55) lateral and 32.4 mm (SD 12.4) proximal, shifting alignment by 0.65. o. (SD 0.55. o. ) valgus. On the intermalleolar line, measuring a point at 46% (SD 2%) of the intermalleolar width from the medial malleoli (2.38 mm medial adjustment from midpoint) resulted in knee alignment identical to using the radiological ankle centre. Conclusion. The current study leveraged AI to create a consistent and objective model that can estimate patient-specific adjustments necessary for optimal landmark usage in extramedullary and computer-guided navigation for tibial coronal alignment to match radiological planning. Cite this article: Bone Jt Open 2022;3(10):767–776


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 74 - 74
7 Aug 2023
Alabdullah M Liu A Xie S
Full Access

Abstract. Rehabilitation exercise is critical for patients’ recovery after knee injury or post-surgery. Unfortunately, adherence to exercise is low due to a lack of positive feedback and poor self-motivation. Therefore, it is crucial to monitor their progress and provide supervision. Inertial measurement unit (IMUs) based sensing technology can provide remote patient monitoring functions. However, most current solutions only measure the range of knee motion in one degree of freedom. The current IMUs estimate the orientation-angle based on the integrated raw data, which might lack accuracy in measuring knee motion. This study aims to develop an IMU-based sensing system using the absolute measured orientation-angle to provide more accurate comprehensive monitoring by measuring the knee rotational angles. An IMU sensing system monitoring the knee joint angles, flexion/extension (FE), adduction/abduction (AA), and internal/external (IE) was developed. The accuracy and reliability of FE measurements were validated in human participants during squat exercise using measures including root mean square error (RMSE) and correlation coefficient. The RMSE of the three knee angles (FE, AA, and IE) were 0.82°, 0.26°, and 0.11°, which are acceptable for assessing knee motion. The FE measurement was validated in human participants and showed excellent accuracy (correlation coefficient of 0.99°). Further validation of AA and IE in human participants is underway. The sensing system showed the capability to estimate three knee rotation angles (FE, AA, and IE). It showed the potential to provide comprehensive continuous monitoring for knee rehabilitation exercises, which can also be used as a clinical assessment tool


Bone & Joint Open
Vol. 2, Issue 8 | Pages 638 - 645
1 Aug 2021
Garner AJ Edwards TC Liddle AD Jones GG Cobb JP

Aims. Joint registries classify all further arthroplasty procedures to a knee with an existing partial arthroplasty as revision surgery, regardless of the actual procedure performed. Relatively minor procedures, including bearing exchanges, are classified in the same way as major operations requiring augments and stems. A new classification system is proposed to acknowledge and describe the detail of these procedures, which has implications for risk, recovery, and health economics. Methods. Classification categories were proposed by a surgical consensus group, then ranked by patients, according to perceived invasiveness and implications for recovery. In round one, 26 revision cases were classified by the consensus group. Results were tested for inter-rater reliability. In round two, four additional cases were added for clarity. Round three repeated the survey one month later, subject to inter- and intrarater reliability testing. In round four, five additional expert partial knee arthroplasty surgeons were asked to classify the 30 cases according to the proposed revision partial knee classification (RPKC) system. Results. Four classes were proposed: PR1, where no bone-implant interfaces are affected; PR2, where surgery does not include conversion to total knee arthroplasty, for example, a second partial arthroplasty to a native compartment; PR3, when a standard primary total knee prosthesis is used; and PR4 when revision components are necessary. Round one resulted in 92% inter-rater agreement (Kendall’s W 0.97; p < 0.005), rising to 93% in round two (Kendall’s W 0.98; p < 0.001). Round three demonstrated 97% agreement (Kendall’s W 0.98; p < 0.001), with high intra-rater reliability (interclass correlation coefficient (ICC) 0.99; 95% confidence interval 0.98 to 0.99). Round four resulted in 80% agreement (Kendall’s W 0.92; p < 0.001). Conclusion. The RPKC system accounts for all procedures which may be appropriate following partial knee arthroplasty. It has been shown to be reliable, repeatable and pragmatic. The implications for patient care and health economics are discussed. Cite this article: Bone Jt Open 2021;2(8):638–645


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_7 | Pages 19 - 19
1 Jul 2022
Sweed T Boutefnouchet T Lim Z Amerasekera S Choudhary S Ashraf T
Full Access

Abstract. Introduction. There are several imaging-based measurements for patello-femoral height. Available methods rely predominantly on sagittal images. The latter can be misleading with sagittal oblique slices and when the patella is tilted and/or chronically subluxed. In this study we describe a simple method of patellar height measurement using axial MRI overlap. Materials and methods. A retrospective observational analysis of 97 knees from 251 patients was conducted. Cases were selected following the exclusion of scans with fractures, massive effusion, patello-femoral pathology. Axial patello-trochlear overlap (APTO) was measured on the axial MRI images as follows: (1) Patellar length (P): expressed as the number of axial images showing patellar articular surface (2) Trochlear overlap (T): the number of axial images showing overlap between patellar articular surface and articular surface of lateral trochlea. APTO is the ratio T/P. All measurements were carried out independently and on two separate occasions by 6 raters. As a control conventional patello-trochlear index were measured for all patients by a senior musculoskeletal radiologist. Results. The mean APTO value was 36.7 (range 14.2 to 66.6; SD 11.4). There was a positive correlation with patello-trochlear index (Pearson correlation coefficient: 0.76, P < 0.001). Intra-observer reliability was good (ICC: 0.66 95 CI 0.54, 0.76, P < 0.001). Inter-observer reliability was fair (ICC: 0.51, 95 CI 0.41, 0.6, P < 0.001). Conclusion. In the present proof of concept study APTO was a reliable measurement of patellar height and correlated with patella-trochlear indices. The method described can prove valuable in overcoming issues with sagittal image measurements


The Bone & Joint Journal
Vol. 102-B, Issue 7 | Pages 868 - 873
1 Jul 2020
Yang G Dai Y Dong C Kang H Niu J Lin W Wang F

Aims. The purpose of this study was to explore the correlation between femoral torsion and morphology of the distal femoral condyle in patients with trochlear dysplasia and lateral patellar instability. Methods. A total of 90 patients (64 female, 26 male; mean age 22.1 years (SD 7.2)) with lateral patellar dislocation and trochlear dysplasia who were awaiting surgical treatment between January 2015 and June 2019 were retrospectively analyzed. All patients underwent CT scans of the lower limb to assess the femoral torsion and morphology of the distal femur. The femoral torsion at various levels was assessed using the a) femoral anteversion angle (FAA), b) proximal and distal anteversion angle, c) angle of the proximal femoral axis-anatomical epicondylar axis (PFA-AEA), and d) angle of the AEA–posterior condylar line (AEA-PCL). Representative measurements of distal condylar length were taken and parameters using the ratios of the bianterior condyle, biposterior condyle, bicondyle, anterolateral condyle, and anteromedial condyle were calculated and correlated with reference to the AEA, using the Pearson Correlation coefficient. Results. The femoral torsion had a strong correlation with distal condylar morphology. The FAA was significantly correlated with the ratio of the bianterior condyle (r = 0.355; p = 0.009), the AEA-PCL angle (r = 0.340; p = 0.001) and the ratio of the anterolateral condyle and lateral condyle (ALC-LC) (r = 0.309; p = 0.014). The PFA-AEA angle was also significantly correlated with the ratio of the bianterior condyle (r = 0.319; p = 0.008), the AEA-PCL angle (r = 0.231; p = 0.031), and the ratio of ALC-LC (r = 0.261; p = 0.034). In addition, the bianterior condyle ratio showed a significant correlation with the biposterior condyle ratio (r = -0.324; p = 0.027) and the AEA-PCL angle (r = 0.342; p = 0.021). Conclusion. Increased femoral torsion correlated with a prominent anterolateral condyle and a shorter posterolateral condyle compared with the medial condyle. The deformities of the anterior and posterior condyles are combined deformities rather than being isolated and individual deformities in patients with trochlear dysplasia and patella instability. Cite this article: Bone Joint J 2020;102-B(7):868–873


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_12 | Pages 26 - 26
1 Oct 2018
Dunbar MJ Laende E Richardson CG
Full Access

Introduction. Cementless fixation in total knee arthroplasty has been proposed to offer advantages long-term once osteointegration has occurred as there is no substrate between the implant and the bone to fail. Radiostereometric analysis (RSA) is a useful tool to study fixation, but typically focused on early migration in the first two post-operative years. Few studies have looked at 10-year RSA migration in cementless fixation and those that have contain small numbers of subjects. The objective of this study was to compare implant migration and inducible displacement between cemented and cementless TKA at 10 years and to compare the 10-year migration to the 2-year data in an effort to validate the predictive modelling of RSA. Methods. Subjects who had previously participated in RSA migration studies with 2-year follow-up were recruited to return for a long-term follow-up exam, at least 10 years from their surgery. The implants under study included two cemented designs from two manufacturers and one porous metal monoblock cementless design. At the 10-year visit, subjects had supine RSA exams to determine long-term migration as well as a loaded exam (single leg stance) to determine inducible displacement. Differences between cemented and cementless groups were evaluated with the Mann Whitney U test and Spearman's rank correlation coefficients were calculated for early and late migrations. Significance was set at p < 0.05. Results. Seventy-five subjects were available for long-term follow-up, with average time since surgery of 12 years. This cohort contained 51 women and 24 men with cemented tibial components in 53 cases (37 female) and cementless tibial components in 22 cases (14 female). At the time of surgery, the subjects were 62±7 years old with BMIs of 33±6 m/kg2 (mean±standard deviation). Median migration at the long-term follow-up was 0.6 mm (MTPM; range 0.2–2.8 mm) and was not different between the cemented and cementless groups (p = 0.9, Mann Whitney U Test). Inducible displacement at 10 years was significantly lower for the cementless implants (p<0.001, Figure 1). Migration at one, two, and 10 years did not correlate with inducible displacement at 10 years. However, migration at one year and two years did correlate with long-term migration, with the strongest correlation at two years (Spearman's rank correlation coefficient for all components = 0.74, p < 0.001, Figure 2). Conclusion. Although long-term migration was not different for cemented or cementless (porous metal monoblock) tibial components, inducible displacement at the 10-year visit was significantly lower for these cementless components, suggesting superior fixation. Additionally, long-term migration was strongly correlated to two-year migration, regardless of fixation. These findings support the predictive value of short-term migration in determining long-term fixation. For any figures or tables, please contact authors directly


The Bone & Joint Journal
Vol. 101-B, Issue 10 | Pages 1230 - 1237
1 Oct 2019
Kayani B Konan S Horriat S Ibrahim MS Haddad FS

Aims. The aim of this study was to assess the effect of posterior cruciate ligament (PCL) resection on flexion-extension gaps, mediolateral soft-tissue laxity, fixed flexion deformity (FFD), and limb alignment during posterior-stabilized (PS) total knee arthroplasty (TKA). Patients and Methods. This prospective study included 110 patients with symptomatic osteoarthritis of the knee undergoing primary robot-assisted PS TKA. All operations were performed by a single surgeon using a standard medial parapatellar approach. Optical motion capture technology with fixed femoral and tibial registration pins was used to assess gaps before and after PCL resection in extension and 90° knee flexion. Measurements were made after excision of the anterior cruciate ligament and prior to bone resection. There were 54 men (49.1%) and 56 women (50.9%) with a mean age of 68 years (. sd. 6.2) at the time of surgery. The mean preoperative hip-knee-ankle deformity was 4.1° varus (. sd. 3.4). Results. PCL resection increased the mean flexion gap significantly more than the extension gap in the medial (2.4 mm (. sd. 1.5) vs 1.3 mm (. sd. 1.0); p < 0.001) and lateral (3.3 mm (. sd. 1.6) vs 1.2 mm (. sd. 0.9); p < 0.01) compartments. The mean gap differences after PCL resection created significant mediolateral laxity in flexion (gap difference: 1.1 mm (. sd. 2.5); p < 0.001) but not in extension (gap difference: 0.1 mm (. sd. 2.1); p = 0.51). PCL resection significantly improved the mean FFD (6.3° (. sd. 4.4) preoperatively vs 3.1° (. sd. 1.5) postoperatively; p < 0.001). There was a strong positive correlation between the preoperative FFD and change in FFD following PCL resection (Pearson’s correlation coefficient = 0.81; p < 0.001). PCL resection did not significantly affect limb alignment (mean change in alignment: 0.2° valgus (. sd. 1.2); p = 0.60). Conclusion. PCL resection creates flexion-extension mismatch by increasing the flexion gap more than the extension gap. The increase in the lateral flexion gap is greater than the increase in the medial flexion gap, which creates mediolateral laxity in flexion. Improvements in FFD following PCL resection are dependent on the degree of deformity before PCL resection. Cite this article: Bone Joint J 2019;101-B:1230–1237


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 85 - 90
1 Jun 2020
Blevins JL Rao V Chiu Y Lyman S Westrich GH

Aims. The purpose of this investigation was to determine the relationship between height, weight, and sex with implant size in total knee arthroplasty (TKA) using a multivariate linear regression model and a Bayesian model. Methods. A retrospective review of an institutional registry was performed of primary TKAs performed between January 2005 and December 2016. Patient demographics including patient age, sex, height, weight, and body mass index (BMI) were obtained from registry and medical record review. In total, 8,100 primary TKAs were included. The mean age was 67.3 years (SD 9.5) with a mean BMI of 30.4 kg/m. 2. (SD 6.3). The TKAs were randomly split into a training cohort (n = 4,022) and a testing cohort (n = 4,078). A multivariate linear regression model was created on the training cohort and then applied to the testing cohort . A Bayesian model was created based on the frequencies of implant sizes in the training cohort. The model was then applied to the testing cohort to determine the accuracy of the model at 1%, 5%, and 10% tolerance of inaccuracy. Results. Height had a relatively strong correlation with implant size (femoral component anteroposterior (AP) Pearson correlation coefficient (ρ) = 0.73, p < 0.001; tibial component mediolateral (ML) ρ = 0.77, p < 0.001). Weight had a moderately strong correlation with implant size, (femoral component AP ρ = 0.46, p < 0.001; tibial ML ρ = 0.48, p < 0.001). There was a significant linear correlation with height, weight, and sex with implant size (femoral component R. 2. = 0.607, p < 0.001; tibial R. 2. = 0.695, p < 0.001). The Bayesian model showed high accuracy in predicting the range of required implant sizes (94.4% for the femur and 96.6% for the tibia) accepting a 5% risk of inaccuracy. Conclusion. Implant size was correlated with basic demographic variables including height, weight, and sex. The linear regression and Bayesian models accurately predicted required implant sizes across multiple manufacturers based on height, weight, and sex alone. These types of predictive models may help improve operating room and implant supply chain efficiency. Level of Evidence: Level IV. Cite this article: Bone Joint J 2020;102-B(6 Supple A):85–90


The Bone & Joint Journal
Vol. 102-B, Issue 3 | Pages 301 - 309
1 Mar 2020
Keenan OJF Holland G Maempel JF Keating JF Scott CEH

Aims. Although knee osteoarthritis (OA) is diagnosed and monitored radiologically, actual full-thickness cartilage loss (FTCL) has rarely been correlated with radiological classification. This study aims to analyze which classification system correlates best with FTCL and to assess their reliability. Methods. A prospective study of 300 consecutive patients undergoing unilateral total knee arthroplasty (TKA) for OA (mean age 69 years (44 to 91; standard deviation (SD) 9.5), 178 (59%) female). Two blinded examiners independently graded preoperative radiographs using five common systems: Kellgren-Lawrence (KL); International Knee Documentation Committee (IKDC); Fairbank; Brandt; and Ahlbäck. Interobserver agreement was assessed using the intraclass correlation coefficient (ICC). Intraoperatively, anterior cruciate ligament (ACL) status and the presence of FTCL in 16 regions of interest were recorded. Radiological classification and FTCL were correlated using the Spearman correlation coefficient. Results. Knees had a mean of 6.8 regions of FTCL (SD 3.1), most common medially. The commonest patterns of FTCL were medial ± patellofemoral (143/300, 48%) and tricompartmental (89/300, 30%). ACL status was associated with pattern of FTCL (p = 0.023). All radiological classification systems demonstrated moderate ICC, but this was highest for the IKDC: whole knee 0.68 (95% confidence interval (CI) 0.60 to 0.74); medial compartment 0.84 (95% CI 0.80 to 0.87); and lateral compartment 0.79 (95% CI 0.73 to 0.83). Correlation with actual FTCL was strongest for Ahlbäck (Spearman rho 0.27 to 0.39) and KL (0.30 to 0.33) systems, although all systems demonstrated medium correlation. The Ahlbäck score was the most discriminating in severe knee OA. Osteophyte presence in the medial compartment had high positive predictive value (PPV) for FTCL, but not in the lateral compartment. Conclusion. The Ahlbäck and KL systems had the highest correlation with confirmed cartilage loss at TKA. However, the IKDC system displayed the best interobserver reliability, with favourable correlation with FTCL in medial and lateral compartments, although it was less discriminating in more severe disease. Cite this article: Bone Joint J 2020;102-B(3):301–309


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_11 | Pages 22 - 22
1 Oct 2019
Halawi MJ Jongbloed W Baron S Savoy L Cote MP Lieberman JR
Full Access

Introduction. Patient reported outcome measures (PROMs) are increasingly used as quality benchmarks in total joint arthroplasty (TJA). The objective of this study was to investigate whether PROMs correlate with patient satisfaction, which is arguably the most important and desired outcome. Methods. An institutional joint database was queried for patients who underwent primary, elective, unilateral TJA. Eligible patients were asked to complete a satisfaction survey at final follow-up. Correlation coefficients (R) were calculated to quantify the relationship between patient satisfaction and prospectively collected PROMs. We explored a wide range of PROMs including Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC); Short Form-12 (SF-12), Oxford Hip Score (OHS), Knee Society Clinical Rating Score (KSCRS), Single Assessment Numerical Evaluation (SANE), and University of California Los Angeles activity level rating (UCLA). Results. In general, there was only weak to moderate correlation between patient satisfaction and PROMs. Querying the absolute postoperative scores had higher correlation with patient satisfaction compared to either preoperative scores or net changes in scores. The correlation was higher with disease-specific PROMs (WOMAC, OHS, KSCRS) compared to general health (SF-12), activity level (UCLA), or perception of normalcy (SANE). Within disease-specific PROMs, the pain domain consistently carried the highest correlation with patient satisfaction (WOMAC pain subscale, R = 0.45, p <0.001; KSCRS pain subscale, R = 0.49, p <0.001). Conclusion. There is only weak to moderate correlation between PROMs and patient satisfaction. PROMs alone are not the optimal way to evaluate patient satisfaction. We recommend directly querying patients about satisfaction and using shorter PROMs, particularly disease-specific PROMs that assess pain perception to better gauge patient satisfaction. For figures, tables, or references, please contact authors directly


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_11 | Pages 66 - 66
1 Oct 2019
Blevins JL Rao V Chiu Y Westrich GH
Full Access

Background. Obesity has been shown to be an independent risk factor for aseptic loosening of the tibia and smaller implant size has been correlated with increased risk of failure of tibial components in obese patients [1,2]. Many surgeons have noted that obese patients, especially females, not uncommonly will have small implant sizes. As such, we hypothesized that obesity was not directly correlated with total knee arthroplasty (TKA) implant sizes. The purpose of this study was to determine if increasing body mass index (BMI), height, and/or weight is associated with implant size in primary TKA. Methods. The institutional registry of a single academic center was reviewed to identify all primary TKAs performed between 2005 and 2016. Those without minimum 2-year follow-up or with incomplete implant data were excluded. The different manufacturer's implant designs were categorized based on anteroposterior and mediolateral dimensions of the femoral and tibial component sizes and cross sectional area was determined. BMI was categorized by the World Health Organization (WHO) obesity scale (Class I: BMI 30 to <35, Class II: BMI 35 to <40, Class III: BMI 40 kg/m. 2. or greater). Patient demographics including sex, height, weight, and BMI were analyzed to evaluate correlations with implant size using Pearson correlation coefficients. Results. There were 8,107 TKA included in the analysis with a mean age of 67.3 ± 9.5 years and mean BMI of 30.4 ± 6.3 kg/m. 2. There was a significantly higher proportion of females (63%) in the total cohort as well as in the Obese I, II, and III categories. BMI had no significant association with implant size in the femur or tibia; however, weight had a moderate association with implant size (ρ=0.39–0.48, p<0.001). Increasing height had the strongest correlation with increasing implant size of both the femoral and tibial components (ρ=0.63–0.77, p<0.001). Conclusion. Implant size was correlated with increasing height and weight, but not BMI in this cohort. Therefore, short patients who suffer from obesity, will most likely have smaller component sizes that may necessitate adjuvant fixation techniques (i.e. tibial or femoral stem). In addition, these findings may be useful in predicting TKA implant size based on a patient's height and weight. For figures, tables, or references, please contact authors directly


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_11 | Pages 60 - 60
1 Oct 2019
Kayani B Konan S Horriat S Haddad FS
Full Access

Introduction. The objective of this study was to assess the effect of PCL resection on flexion-extension gaps, mediolateral soft tissue laxity, fixed flexion deformity (FFD), and limb alignment during posterior-stabilised total knee arthroplasty (TKA). Methods. This prospective study included 110 patients with symptomatic knee osteoarthritis undergoing primary robotic-arm assisted posterior-stabilised TKA. All operative procedures were performed by a single surgeon using a standard medial parapatellar approach. Optical motion capture technology with fixed femoral and tibial registration pins was used to assess gaps pre- and post-PCL resection in knee extension and 90 degrees knee flexion. This study included 54 males (49.1%) and 56 females (50.9%) with a mean age of 68 ± 6.2 years at time of surgery. Mean preoperative hip-knee-ankle deformity was 6.1 ± 4.4 degrees varus. Results. PCL resection increased the flexion gap more than the extension gap in the medial (2.4 ± 1.5mm vs 1.3 ± 1.0mm respectively, p<0.001) and lateral (3.3 ± 1.6mm vs 1.2 ± 0.9mm respectively, p<0.01) compartments. The gap differences following PCL resection created mediolateral laxity in flexion (gap difference: 1.1 ± 2.5mm, p<0.001) but not in extension (gap difference: 0.1 ± 2.1mm, p=0.51). PCL resection improved overall FFD (6.3 ± 4.4° preoperatively vs 3.1 ± 1.5° postoperatively, p<0.001). There was a strong positive correlation between preoperative FFD and change in FFD following PCL release (Pearson correlation coefficient = 0.81, p<0.001). PCL resection did not affect overall limb alignment (change in alignment: 0.2 ± 1.2 degrees valgus, p=0.60). Conclusion. PCL resection creates flexion-extension mismatch by increasing the flexion gap proportionally more than the extension gap. The increase in the lateral flexion gap is greater than the increase in medial flexion gap, which creates mediolateral laxity in flexion. Improvements in FFD following PCL resection are dependent on the degree of deformity prior to PCL resection. Bone resection, implant positioning, and periarticular soft tissue balancing should account for these changes in flexion-extension gaps, mediolateral laxity, and fixed flexion deformity following PCL resection in PS TKA. For figures, tables, or references, please contact authors directly


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_11 | Pages 45 - 45
1 Oct 2019
Browne JA Quinlan ND Chen DQ Werner BC
Full Access

Introduction. As total knee arthroplasty incidence in the United States continues to increase, health care entities are looking to reform policy to decrease costs while improving efficiency and quality of care. The allocation of hospital and surgeon charges and payments is an important aspect of health care economics, but the trends and relationship between surgeon and hospital charges and payments for knee arthroplasty have not been well examined. The goal of this study is to report trends and variation in hospital charges and payments compared to surgeon charges and payments for total knee arthroplasty in a Medicare population. Methods. The 5% Medicare sample was used to capture hospital and surgeon charges and payments for total knee arthroplasty from 2005–2014. Two important values were calculated: (1) the charge multiplier (CM) which is the ratio of hospital to surgeon charges, and (2) the payment multiplier (PM), which is the ratio of hospital to surgeon payments. The year to year variation and regional trends in patient demographics, Charlson Comorbidity Index (CCI), length of stay (LOS), CM and PM were evaluated for all patients. Statistical significance of trends was evaluated using student's t-tests. Correlations between the financial multipliers and LOS were evaluated using a Pearson correlation coefficient (r). Results. 117,698 patients were included. Hospital charges were significantly higher than surgeon charges throughout the study period and increased substantially (CM increased from 7.9 to 11.4, p <0.0001) [Fig 1,2]. Hospital payments relative to surgeon payments ratio (PM) followed a similar trend, increasing from 10.0 to 14.6 (p < 0.0001). [Fig 1,2]. Similar trends were noted in all four regions of the US. LOS decreased significantly throughout the study from 3.8 to 2.8 days (p < 0.0001). CCI remained stable over the study period. Both the CM (r2 = −0.90) and PM (r2 = −0.84) were strongly negatively associated with LOS, meaning that as LOS decreased, the ratio of hospital to surgeon charges and payments (CM and PM) paradoxically significantly increased [Fig 3]. Conclusions. Hospital charges and payments relative to surgeon charges and payments have significantly increased for total knee arthroplasty despite stable patient complexity as measured by CCI and decreasing LOS. These results encourage the need for future studies with detailed cost analysis to identify the causes of hospital and surgeon financial malalignment. As healthcare shifts toward value-based care with shared responsibility for outcomes and cost, more closely aligned incentives between hospitals and providers is needed. For figures, tables, or references, please contact authors directly


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 1 | Pages 50 - 56
1 Jan 2007
Yang KGA Raijmakers NJH Verbout AJ Dhert WJA Saris DBF

This study validates the short-form WOMAC function scale for assessment of conservative treatment of osteoarthritis of the knee. Data were collected before treatment and six and nine months later, from 100 patients with osteoarthritis of the knee to determine the validity, internal consistency, test-retest reliability, floor and ceiling effects, and responsiveness of the short-form WOMAC function scale. The scale showed high correlation with the traditional WOMAC and other measures. The internal consistency was good (Cronbach α: 0.88 to 0.95) and an excellent test-retest reliability was found (Lin’s concordance correlation coefficient (ρ. c. ): 0.85 to 0.94). The responsiveness was adequate and comparable to that of the traditional WOMAC (standardised response mean 0.56 to 0.44 and effect size 0.64 to 0.57) and appeared not to be significantly affected by floor or ceiling effects (0% and 7%, respectively). The short-form WOMAC function scale is a valid, reliable and responsive alternative to the traditional WOMAC in the evaluation of patients with osteoarthritis of the knee managed conservatively. It is simple to use in daily practice and is therefore less of a burden for patients in clinical trials


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_12 | Pages 21 - 21
1 Oct 2018
Matsuda S Nakamura S
Full Access

Introduction. Tibial tuberosity and trochlear groove (TT-TG) distance has been investigated for the patients with primary patellofemoral subluxation/dislocation. To date, TT-TG distance after TKA has not been evaluated, and the effect of postoperative TT-TG distance on patellar tracking is unknown. The purpose of the current study was to investigate the effect of TT-TG distance and rotational position of the femoral and tibial components on patellar tilt after TKA. Methods. Consecutive 115 knees for the diagnosis of osteoarthritis were included in the current study. TKA was performed using posterior cruciate ligament sacrificed prosthesis. A total of 17 men and 96 women with an average age of 75.3 years were included at the time of the surgery. Computed tomography (CT) was taken after TKA in full extension. Postoperative TT-TG distance was measured as a reference of surgical epicondylar axis (SEA) of the femur. Patellar tilt was defined as the angle of the patellar component relative to SEA. Femoral and tibial component rotation was measured as the angle relative to SEA and tibial antero-posterior (AP) axis. Tibial AP axis was defined as the line connecting medial one-third of the tibial tuberosity and center of medial-lateral width. Pearson correlation coefficients were calculated to determine the correlations between patellar tilt and TT-TG distance and between patellar tilt and femoral and tibial component rotation. Results. TT-TG distance had significant correlation with patellar tilt (Figure 1; r = 0.254, p = 0.006), whereas femoral component rotation (p = 0.092) and tibial component rotation (p = 0.062) were not correlated with patellar tilt. Concerning the effect on TT-TG distance, femoral component rotation (r = 0.248, p = 0.008) and tibial component rotation (r = −0.567, p < 0.001) were correlated with TT-TG distance. Conclusion. The current study investigated the effect of TT-TG distance on patellar tilt with postoperative CT scan. Greater TT-TG distance resulted in more patellar tilt, which might have negative effects on patellar tracking. In previous clinical studies, femoral component and tibial component rotation affected patellar maltracking. In the current study, however, component rotation itself did not affect patellar tilt. Postoperative TT-TG distance includes information of rotational and medial-lateral positioning of the femoral and tibial components, and can be a useful indicator to predict patellar maltracking after TKA. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_12 | Pages 22 - 22
1 Oct 2018
Saffi M Young SW Spangehl MJ Clarke HD
Full Access

Introduction. Tibial component malrotation is associated with pain, stiffness and altered patellofemoral kinematics in total knee arthroplasty (TKA). However, accurately measuring tibial component rotation following TKA is difficult. Proposed protocols utilizing computed tomography (CT) are not well validated and can be time consuming. This study aimed to; 1) Validate and compare the reproducibility of the Berger (2D-CT) and Mayo (3D-CT) protocols; 2) Validate a simple, and potentially rapid screening measurement using an anatomical distance on 2D axial CT- the Centre of Tibial Tray to Tibial Tubercle (CTTT) distance. Methods. Rotational alignment of 70 TKA patients were evaluated by 3 independent observers using the Berger, and Mayo protocols, which have been previously described, and a new CTTT protocol (Figure 1). The inter and intra-rater interclass correlation coefficients (ICC's), mean difference between measurements and the mean measurement times were calculated. Linear regression analysis was performed to give a coefficient of determination (R2). Results. The intra-rater reliability for all 3 protocols was rated as “very good” (Mayo 0.96, Berger 0.85 and CTTT 0.85). The inter-rater reliability for the Mayo and the Berger method was rated as “very good” (0.87 and 0.83 respectively), the CTTT was rated as “good” (0.79). The Mayo method had a lower mean difference in intra-rater measurements than the Berger method (1.42° vs 2.60° p= <0.01). Comparing the CTTT to the Mayo method produced an R2 value of 0.73 indicating strong correlation. As a screening tool, 92% of patients with CTTT ≤ 6mm had < 9° of tibial component internal rotation (IR), and 93% of patients with a CTTT ≥ 10mm had ≥ 9° IR. The Mayo method takes 3 minutes, 29 seconds; Berger method: 2 minutes, 5 seconds; CTTT method: 39 seconds to perform. Conclusion. 3D CT is the gold standard for formally determining tibial component rotational alignment. The CTTT has the strongest correlation to the Mayo method, and is the least time consuming. The CTTT method can be used as a reliable, simple and rapid screening tool in daily clinical practice to assess tibial component rotational alignment following TKA, prior to formal measurement. For any figures or tables, please contact authors directly


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 7 | Pages 915 - 918
1 Jul 2007
Hanratty BM Thompson NW Wilson RK Beverland DE

We have studied the concept of posterior condylar offset and the importance of its restoration on the maximum range of knee flexion after posterior-cruciate-ligament-retaining total knee replacement (TKR). We measured the difference in the posterior condylar offset before and one year after operation in 69 patients who had undergone a primary cruciate-sacrificing mobile bearing TKR by one surgeon using the same implant and a standardised operating technique. In all the patients true pre- and post-operative lateral radiographs had been taken. The mean pre- and post-operative posterior condylar offset was 25.9 mm (21 to 35) and 26.9 mm (21 to 34), respectively. The mean difference in posterior condylar offset was + 1 mm (−6 to +5). The mean pre-operative knee flexion was 111° (62° to 146°) and at one year postoperatively, it was 107° (51° to 137°). There was no statistical correlation between the change in knee flexion and the difference in the posterior condylar offset after TKR (Pearson correlation coefficient r = −0.06, p = 0.69)


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 12 | Pages 1575 - 1578
1 Dec 2009
Jaiswal PK Macmull S Bentley G Carrington RWJ Skinner JA Briggs TWR

Smoking is known to have an adverse effect on wound healing and musculoskeletal conditions. This case-controlled study looked at whether smoking has a deleterious effect in the outcome of autologous chondrocyte implantation for the treatment of full thickness chondral defects of the knee. The mean Modified Cincinatti Knee score was statistically significantly lower in smokers (n = 48) than in non-smokers (n = 66) both before and after surgery (p < 0.05). Smokers experienced significantly less improvement in the knee score two years after surgery (p < 0.05). Graft failures were only seen in smokers (p = 0.016). There was a strong negative correlation between the number of cigarettes smoked and the outcome following surgery (Pearson’s correlation coefficient −0.65, p = 0.004). These results suggest that patients who smoke have worse pre-operative function and obtain less benefit from this procedure than non-smokers. The counselling of patients undergoing autologous chondrocyte implantation should include smoking, not only as a general cardiopulmonary risk but also because poorer results can be expected in smokers following this procedure


The Bone & Joint Journal
Vol. 106-B, Issue 8 | Pages 817 - 825
1 Aug 2024
Borukhov I Ismailidis P Esposito CI LiArno S Lyon J McEwen PJ

Aims

This study aimed to evaluate if total knee arthroplasty (TKA) femoral components aligned in either mechanical alignment (MA) or kinematic alignment (KA) are more biomimetic concerning trochlear sulcus orientation and restoration of trochlear height.

Methods

Bone surfaces from 1,012 CT scans of non-arthritic femora were segmented using a modelling and analytics system. TKA femoral components (Triathlon; Stryker) were virtually implanted in both MA and KA. Trochlear sulcus orientation was assessed by measuring the distal trochlear sulcus angle (DTSA) in native femora and in KA and MA prosthetic femoral components. Trochlear anatomy restoration was evaluated by measuring the differences in medial, lateral, and sulcus trochlear height between native femora and KA and MA prosthetic femoral components.