Excessive chondrocyte hypertrophy is a common feature in cartilage degeneration which is susceptible to joint overloading, but the relationship between mechanical overloading and chondrocyte hypertrophy still remains elusive. The aim of our study was to explore the mechanism of mechanical compression-induced chondrocyte hypertrophy. In this study, the temporomandibular joint (TMJ) degeneration model was built through forced mandibular retrusion (FMR)-induced compression in TMJ. Chondrocytes were also mechanically compressed in vitro. The role of O-GlcNAcylation in mechanical compression-induced chondrocyte hypertrophy manifested through specific activator Thiamet G and inhibitor OSMI-1.Aims
Methods
Minimally manipulated cells, such as autologous bone marrow concentrates (BMC), have been investigated in orthopaedics as both a primary therapeutic and augmentation to existing restoration procedures. However, the efficacy of BMC in combination with tissue engineering is still unclear. In this study, we aimed to determine whether the addition of BMC to an osteochondral scaffold is safe and can improve the repair of large osteochondral defects when compared to the scaffold alone. The ovine femoral condyle model was used. Bone marrow was aspirated, concentrated, and used intraoperatively with a collagen/hydroxyapatite scaffold to fill the osteochondral defects (n = 6). Tissue regeneration was then assessed versus the scaffold-only group (n = 6). Histological staining of cartilage with alcian blue and safranin-O, changes in chondrogenic gene expression, microCT, peripheral quantitative CT (pQCT), and force-plate gait analyses were performed. Lymph nodes and blood were analyzed for safety.Aims
Methods
Certain technical advances, such as flexible intramedullary fixation and bioreabsorbable implants, have further increased enthusiasm for surgical management of pediatric fractures.» (Flynn et al.). In the Paediatric Surgery Department biodegradable pins of solid polydioxanone (PDS) in management of paediatric fractures have been used since April 1986. PDS pins are too soft for the osteosynthesis in fractures with fragments under high tensile pressures. However, we have successfully carried out a large number of internal fixations in children’s elbows. This is based on accurate distribution of PDS pins and careful positioning of periostal sutures and the adjacent disrupted muscles. Our technique, as presented at the 2nd European Congress of Paediatric Surgery in Madrid in 1997, is to fix temporarily the repositioned fractured fragment with Kirschner’s metal wire. Following osteosynthesis with PDS, the protruding K-wire is left in place for seven days until the limb is safely immobilized. A total of 96 patients were operated. The purpose of the study is to compare osteosynthesis with PDS pins (Group A) with that of metallic K-wire (Group B). Each group consisted of 48 children. General characteristics (age, sex, and fracture types) were statistically the same (P >
0.05). In Group A, with children between 2 and 13 years, or 9.3 on average, 21 children were with the lateral
Aims. The morphometry of the distal femur was largely studied to improve
bone-implant fit in total knee arthroplasty (TKA), but little is
known about the asymmetry of the posterior
We investigated whether the extension gap in total knee replacement (TKR) would be changed when the femoral component was inserted. The extension gap was measured with and without the femoral component in place in 80 patients with varus osteoarthritis undergoing posterior-stabilised TKR. The effect of a post-operative increase in the size of the femoral posterior
Chondral defects in the knee have cartilage biomechanical differences due to defect size and orientation. This study examines how the tibiofemoral contact pressure is affected by increasing full-thickness chondral defect size on the medial and lateral
Aims and Objectives Lateral
Purpose of the study: Fracture of the medial
Introduction: Fracture of the lateral
Previously more femoral rollback has been reported in posterior-stabilized implants, but so far the kinematic change after post-cam engagement has been still unknown. The tri-condylar implants were developed to fit a life style requiring frequent deep flexion activities, which have the ball and socket third
Purpose We report the long term outcome of a minimally invasive technique avoiding the risks associated with open reduction and bone grafting in paediatric lateral
Purpose of the study: TKA on genu valgum raises serious problems for the ligament balance. Excessive release of the lateral retracted ligaments exposes the knee to potential instability in the frontal plane. To resolve this problem and avoid implantation of a constrained TKA, we opted for osteotomy of the lateral
Wear of the polyethylene (PE) insert in total knee replacements can lead to wear-particle and fluid-pressure induced osteolysis. One major factor affecting the wear behaviour of the PE insert in-vivo is the surface characteristics of the articulating femoral components. Contemporary femoral components available in Canada are either made of cast Cobalt Chromium (CoCr) alloy or have an oxidized zirconium surface (Oxinium). The latter type of femoral components have shown to have increased abrasive wear resistance and increased surface wettability, thus leading to reduced PE wear in-vitro compared with conventional cast CoCr components. Although surface damage has been reported on femoral components in general, there have been no reports in the literature as to what extent the recommended operating techniques affect the surface tribology of either type of femoral component. Twenty-two retrieved total knee replacements were identified with profound surface damage on the posterior aspect of the femoral condyles. The femoral components were of three different knee systems: five retrievals from the NexGen(r) total knee system (Zimmer Inc., Warsaw, IN), twelve retrievals from the Genesis II(r) total knee system (CoCr alloy or Oxinium; Smith & Nephew Inc., Memphis, TN), and five retrievals from the Duracon(r) total knee system (Stryker Inc., Mahwah, NJ). Reasons for revision were all non-wear-related and included aseptic loosening in two cases, painful flexion instability, and chronic infection. All retrieved femoral components showed evidence of surface damage on the
Introduction. An equal knee joint height during flexion and extension is of critical importance in optimizing soft-tissue balancing following total knee arthroplasty (TKA). However, there is a paucity of data regarding the in-vivo knee joint height behavior. This study evaluated in-vivo heights and anterior-posterior (AP) translations of the medial and lateral femoral condyles before and after a cruciate-retaining (CR)-TKA using two flexion axes: surgical transepicondylar axis (sTEA) and geometric center axis (GCA). Methods. Eleven patient with advanced medial knee osteoarthritis (age: 51–73 years) who scheduled for a CR TKA and 9 knees from 8 healthy subjects (age: 23–49 years) were recruited. 3D models of the tibia and femur were created from their MR images. Dual fluoroscopic images of each knee were acquired during a weight-bearing single leg lunge. The OA knee was imaged again one year after surgery using the fluoroscopy during the same weight-bearing single leg lunge. The in vivo positions of the knee along the flexion path were determined using a 2D/3D matching technique. The GCA and sTEA were determined based on existing methods. Besides the anterior-posterior translation, the femoral condyle heights were determined using the distances from the medial and lateral epicondyle centers on the sTEA and GCA to the tibial plateau surface in coronal plane (Fig. 1). The paired t-test was applied to compare the medial and lateral
1. Thirteen cases of non-union of the epiphysis of the lateral
1. The mechanism of production of injury to the lateral
Aims: We wanted to compare bioactive glass granules with autogenous bone in operative treatment of lateral
86 children with 87 lateral
Our study describes a posterolateral approach to the distal humerus for open reduction and internal fixation of displaced fractures of the lateral
Aims: Henri Dejour promoted a mechanism involving a third femoral condyle to achieve Posterior Stabilization (PS) in total knee arthroplasty (TKA) introducing the HLS II prosthesis. This retrospective study was conducted to assess the behavior of such PS mechanism. Methods: Between 1992 and 1993, 105 HLS II prostheses (94 patients) were consecutively inserted (78% arthrosis, 19% rheumatoid arthritis). No patient was lost for follow-up but 14 had died, 6 were unable to walk (severe neurological disorder), 4 were contacted by phone. Consequently, 70 patients (77 TKA) mean aged 66 years (22–79) were assessed after a mean follow-up of 7 years (6–8). All the components were fixed with cement and patellar resurfacing was always performed. Results: The knee IKS score increased from de 27 points [0–63] before surgery to 81 [21–100] at follow-up and functional IKS from 35 points [0–75] to 64 [0–100] (p<
0,0001). Similarly range of motion improved from 114° [60°–140°] to 116° [80°–135°] (NS). At follow-up, 86% of the patients were able to practice stairs (13% without support and 28% in alternative manner) against 52% before surgery (1% without support and 1% in alternative manner) (p=0,001). Tibial bone-cement radiolucencies were observed without loosening in 30% (all <
1 mm and non- progressive) mainly related to severe preoperative varus deformation (p = 0.01). One late infection required reoperation. Ninety months survival was 97% ± 1.3% with reoperation related to infection or mechanical disorder as end-point. Conclusion: The posterior stabilization, by means of a third