Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

IN VIVO KINEMATIC EFFECTS OF BALL AND SOCKET THIRD CONDYLE AS POST-CAM MECHANISM IN TRI-CONDYLAR KNEE IMPLANTS

The International Society for Technology in Arthroplasty (ISTA), 27th Annual Congress. PART 3.



Abstract

Previously more femoral rollback has been reported in posterior-stabilized implants, but so far the kinematic change after post-cam engagement has been still unknown. The tri-condylar implants were developed to fit a life style requiring frequent deep flexion activities, which have the ball and socket third condyle as post-cam mechanism. The purpose of the current study was to examine the kinematic effects of the ball and socket third condyle during deep knee flexion.

The tri-condylar implant analyzed in the current study is the Bi-Surface Knee System developed by Kyocera Medical (Osaka, Japan). Seventeen knees implanted with a tri-condylar implant were analyzed using 3D to 2D registration approach. Each patient was asked to perform a weight-bearing deep knee bend from full extension to maximum flexion under fluoroscopic surveillance. During this activity, individual fluoroscopic video frames were digitized at 10°increments of knee flexion. A distance of less than 1 mm initially was considered to signify the ball and socket contact. The translation rate as well as the amount of translation of medial and lateral AP contact points and the axial rotation was compared before and after the ball and socket joint contact.

The average angle of ball and socket joint contact were 64.7° (SD = 8.7), in which no separation was observed after initial contact. The medial contact position stayed from full extension to ball and socket joint contact and then moved posteriorly with knee flexion. The lateral contact position showed posterior translation from full extension to ball and socket joint contact, and then greater posterior translation after contact (Figure 1). Translation and translation rate of contact positions were significantly greater at both condyles after ball and socket joint contact. The femoral component rotated externally from full extension to ball and socket joint contact, and then remained after ball and socket joint contact (Figure 2). There was no statistical significance in the angular rotation between ball and socket joint contact and maximum flexion. Translation of angular rotation was significantly greater before ball and socket joint contact, however, there was no significance in translation rate before and after ball and socket joint contact.

The ball and socket joint was proved to induce posterior rollback intensively. In terms of axial rotation, the ball and socket joint did not induce reverse rotation, but had slightly negative effects after contact. The ball and socket provided enough functions as a posterior stabilizing post-cam mechanism and did not prevent axial rotation.


*Email: