Tendon-related pathologies such as tendinopathy represent a relevant clinical and socioeconomic issue. The most innovative and conservative therapeutic approaches are meant to stimulate the intrinsic healing capability of the tissue. In this study, the use of pulsed electromagnetic fields (PEMFs) was investigated in a rat model of Achilles tendinopathy as a potential therapy. Achilles tendinopathy was chemically induced in eighty-six Sprague Dawley rats by injecting collagenase Type I within the tendon fibers. Fifty-six of them were stimulated with PEMFs (8 hours/day, 1.5 ± 0.2 mT; 75 Hz), divided in different experimental groups basing on the starting-time of PEMFs exposure (after 0, 7, 15 after Collagenase injection) and its duration (7, 15 or 30 days). Thirty animals were left unstimulated (CTRL group). According to the different time points, explanted tendons were evaluated through histological and immunohistochemical analyses in term of matrix deposition, fiber re-organization, neovascularization and inflammatory reaction. The most effective PEMF stimulation was demonstrated in the 15 days of treatment. However, when PEMF were applied immediately after the
Objectives. Recent studies have shown that systemic injection of rapamycin can prevent the development of osteoarthritis (OA)-like changes in human chondrocytes and reduce the severity of experimental OA. However, the systemic injection of rapamycin leads to many side effects. The purpose of this study was to determine the effects of intra-articular injection of Torin 1, which as a specific inhibitor of mTOR which can cause induction of autophagy, is similar to rapamycin, on articular cartilage degeneration in a rabbit osteoarthritis model and to investigate the mechanism of Torin 1’s effects on experimental OA. Methods. Collagenase (type II) was injected twice into both knees of three-month-old rabbits to induce OA, combined with two intra–articular injections of Torin 1 (400 nM). Degeneration of articular cartilage was evaluated by histology using the Mankin scoring system at eight weeks after injection. Chondrocyte degeneration and autophagosomes were observed by transmission electron microscopy. Matrix metallopeptidase-13 (MMP-13) and vascular endothelial growth factor (VEGF) expression were analysed by quantitative RT-PCR (qPCR).Beclin-1 and light chain 3 (LC3) expression were examined by Western blotting. Results. Intra-articular injection of Torin 1 significantly reduced degeneration of the articular cartilage after induction of OA. Autophagosomes andBeclin-1 and LC3 expression were increased in the chondrocytes from Torin 1-treated rabbits. Torin 1 treatment also reduced MMP-13 and VEGF expression at eight weeks after
Dupuytren Disease (DD), the most common connective tissue disease in man, presents as a benign fibromatosis of the hands and fingers resulting in the formation of nodules and cords and often leading to flexion contractures in association with keloids or Peyronie disease. Surgical resection of the fibrotic nodules, and more recently intra-lesional
The collagenase of Clostridium Histolyticum enzyme infiltration is a mini-invasive treatment method for Dupuytren's disease which has emerged in recent years as an alternative to traditional surgery (selective aponeurectomy). Although both treatments are effective in the long term, a wider use of the enzyme is spreading worldwide. Indications and protocol of administration of collagenase are strictly regulated by the Italian Drug Administration Agency (AIFA). In the present study an off-label use of this medication has been experienced, in terms of wider indications and more numerous infiltration sites in the same cord (Multipoint technique) and in additional cords affecting other digits (Multicord technique). All patients suffering from Dupuytren's disease and accessing the Hand Surgery outpatient at Rizzoli Institute were considered for the study, between february 2014 and february 2016. Inclusion criteria were Dupuytren's disease and a positive tabletop test. The
Summary Statement. Increased Dkk-1 signaling is associated with OA occurrence and joint microenvironment damage. Interruption of Dkk1 action is beneficial to improve OA knees. Introduction. Osteoarthritis (OA) is a leading cause of disability and healthcare financial burden for total knee arthroplasty, rehabilitation, and disability. Inappropriate mechanical stress, immunological, or biochemical regulation reportedly disturbs homeostasis among cartilage, synovium and subchondral bone microstructure that contributes to OA pathogenesis. Control of joint-deleterious factor action is an emerging strategy to ameliorate OA-induced joint deterioration. Dickkopf-1 (Dkk-1) is a potent inhibitor for Wnt/β-catenin signaling regulation of tissue development and remodeling in physiological or pathological contexts. Dkk-1 also acts as a master deleterious factor that represses osteoblast differentiation capacity and bone repair. Associations among Dkk-1 expression, chondrocyte fate, synovial fibroblast behavior or OA incidence are merit of characterization. Patients & Methods. Cartilage, synovial tissue and fluid were harvested from informed consent OA patients underwent arthroplasty and patient with knee injuries without OA changes as controls. Primary chondrocyte cultures and synovial fibroblasts were treated with inflammatory cytokines or Dkk-1 antisense oligonucleotide or monoclonal antibodies. Knees in experimental animals were subjected to anterior cruciate ligament transection- or intra-articular
Triamcinolone acetonide (TA) is widely used for the treatment of rotator cuff injury because of its anti-inflammatory properties. However, TA can also produce deleterious effects such as tendon degeneration or rupture. These harmful effects could be prevented by the addition of platelet-rich plasma (PRP), however, the anti-inflammatory and anti-degenerative effects of the combined use of TA and PRP have not yet been made clear. The objective of this study was to determine how the combination of TA and PRP might influence the inflammation and degeneration of the rotator cuff by examining rotator cuff-derived cells induced by interleukin (IL)-1ß. Rotator cuff-derived cells were seeded under inflammatory stimulation conditions (with serum-free medium with 1 ng/ml IL-1ß for three hours), and then cultured in different media: serum-free (control group), serum-free + TA (0.1mg/ml) (TA group), serum-free + 10% PRP (PRP group), and serum-free + TA (0.1mg/ml) + 10% PRP (TA+PRP group). Cell morphology, cell viability, and expression of inflammatory and degenerative mediators were assessed.Objectives
Methods