Advertisement for orthosearch.org.uk
Results 1 - 20 of 217
Results per page:
Bone & Joint Research
Vol. 12, Issue 4 | Pages 259 - 273
6 Apr 2023
Lu R Wang Y Qu Y Wang S Peng C You H Zhu W Chen A

Aims. Osteoarthritis (OA) is a prevalent joint disorder with inflammatory response and cartilage deterioration as its main features. Dihydrocaffeic acid (DHCA), a bioactive component extracted from natural plant (gynura bicolor), has demonstrated anti-inflammatory properties in various diseases. We aimed to explore the chondroprotective effect of DHCA on OA and its potential mechanism. Methods. In vitro, interleukin-1 beta (IL-1β) was used to establish the mice OA chondrocytes. Cell counting kit-8 evaluated chondrocyte viability. Western blotting analyzed the expression levels of collagen II, aggrecan, SOX9, inducible nitric oxide synthase (iNOS), IL-6, matrix metalloproteinases (MMPs: MMP1, MMP3, and MMP13), and signalling molecules associated with nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. Immunofluorescence analysis assessed the expression of aggrecan, collagen II, MMP13, and p-P65. In vivo, a destabilized medial meniscus (DMM) surgery was used to induce mice OA knee joints. After injection of DHCA or a vehicle into the injured joints, histological staining gauged the severity of cartilage damage. Results. DHCA prevented iNOS and IL-6 from being upregulated by IL-1β. Moreover, the IL-1β-induced upregulation of MMPs could be inhibited by DHCA. Additionally, the administration of DHCA counteracted IL-1β-induced downregulation of aggrecan, collagen II, and SOX9. DHCA protected articular cartilage by blocking the NF-κB and MAPK pathways. Furthermore, DHCA mitigated the destruction of articular cartilage in vivo. Conclusion. We present evidence that DHCA alleviates inflammation and cartilage degradation in OA chondrocytes via suppressing the NF-κB and MAPK pathways, indicating that DHCA may be a potential agent for OA treatment. Cite this article: Bone Joint Res 2023;12(4):259–273


Bone & Joint Research
Vol. 10, Issue 10 | Pages 693 - 703
1 Oct 2021
Wang X Wang D Xia P Cheng K Wang Q Wang X Lin Q Song J Chen A Li X

Aims. To evaluate the effect of ultrasound-targeted simvastatin-loaded microbubble destruction (UTMDSV) for alleviation of the progression of osteoarthritis (OA) in rabbits through modulation of the peroxisome proliferator-activated receptor (PPARγ). Methods. In vitro, OA chondrocytes were treated with ultrasound (US), US-targeted microbubble destruction (UTMD), simvastatin (SV), and UTMDSV on alternate days for four weeks. Chondrocytes were also treated with PPARγ inhibitor, PPARγ inhibitor+ UTMDSV, and UTMDSV. The cholesterol efflux rate and triglyceride levels were measured using an assay kit and oil red O staining, respectively. In vivo, the OA rabbits were treated with a single intra-articular injection of UTMD, SV, and UTMDSV every seven days for four weeks. Cartilage histopathology was assessed by safranin-O staining and the Mankin score. Total cholesterol (TC) and high-density lipoprotein-cholesterol (HDL-C) in rabbit knee synovial fluid were detected by enzyme-marker assay. Aggrecan, collagen II, and PPARγ expression levels were analyzed by Western blotting (WB). Results. In vitro, UTMDSV significantly increased the cholesterol efflux rate and aggrecan, collagen II, and PPARγ levels in OA chondrocytes; these effects were blocked by the PPARγ inhibitor. In vivo, UTMD. SV. significantly increased aggrecan, collagen II, PPARγ, and HDL-C levels, while TC levels and Mankin scores were decreased compared with the UTMD, SV, OA, and control groups. Conclusion. UTMDSV promotes cartilage extracellular matrix synthesis by modulating the PPARγ-mediated cholesterol efflux pathway in OA rabbits. Cite this article: Bone Joint Res 2021;10(10):693–703


Bone & Joint Research
Vol. 13, Issue 3 | Pages 110 - 123
7 Mar 2024
Xu J Ruan Z Guo Z Hou L Wang G Zheng Z Zhang X Liu H Sun K Guo F

Aims. Osteoarthritis (OA) is the most common chronic pathema of human joints. The pathogenesis is complex, involving physiological and mechanical factors. In previous studies, we found that ferroptosis is intimately related to OA, while the role of Sat1 in chondrocyte ferroptosis and OA, as well as the underlying mechanism, remains unclear. Methods. In this study, interleukin-1β (IL-1β) was used to simulate inflammation and Erastin was used to simulate ferroptosis in vitro. We used small interfering RNA (siRNA) to knock down the spermidine/spermine N1-acetyltransferase 1 (Sat1) and arachidonate 15-lipoxygenase (Alox15), and examined damage-associated events including inflammation, ferroptosis, and oxidative stress of chondrocytes. In addition, a destabilization of the medial meniscus (DMM) mouse model of OA induced by surgery was established to investigate the role of Sat1 inhibition in OA progression. Results. The results showed that inhibition of Sat1 expression can reduce inflammation, ferroptosis changes, reactive oxygen species (ROS) level, and lipid-ROS accumulation induced by IL-1β and Erastin. Knockdown of Sat1 promotes nuclear factor-E2-related factor 2 (Nrf2) signalling. Additionally, knockdown Alox15 can alleviate the inflammation-related protein expression induced by IL-1β and ferroptosis-related protein expression induced by Erastin. Furthermore, knockdown Nrf2 can reverse these protein expression alterations. Finally, intra-articular injection of diminazene aceturate (DA), an inhibitor of Sat1, enhanced type II collagen (collagen II) and increased Sat1 and Alox15 expression. Conclusion. Our results demonstrate that inhibition of Sat1 could alleviate chondrocyte ferroptosis and inflammation by downregulating Alox15 activating the Nrf2 system, and delaying the progression of OA. These findings suggest that Sat1 provides a new approach for studying and treating OA. Cite this article: Bone Joint Res 2024;13(3):110–123


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 105 - 105
1 Nov 2018
Wu Z Korntner S Mullen A Skoufos I Tzora A Zeugolis D
Full Access

Porcine and fish by-products in particular are rich sources for collagen, which is the main component of the extracellular matrix (ECM). Although there are studies investigating different collagen derived from various tissue sources for the purpose of creating biomaterials, the comparison of biophysical, biochemical and biological properties of type II collagen isolated from cartilaginous tissues has yet to be assessed. In addition, it has been shown from previous studies that sex steroid hormones affect the collagen content in male and female animals, herein, type II collagens from male and female porcine cartilage were assessed in order to investigate gender effects on the property of collagen scaffolds. Moreover, type II collagen has a supportive role in articular cartilage in the knee joint. Therefore, the aim is to assess the properties of type II collagen scaffolds as a function of species, tissue and gender for cartilage regeneration. Type II collagen was extracted from male and female porcine trachea, auricular, articular cartilage and cartilaginous fish through acid-pepsin digestion at 4°C. SDS-PAGE was conducted to confirm the purity of extracted collagen. Collagen sponges were created via freeze-drying. Scaffold structure and pore size were evaluated by scanning electron microscopy (SEM). Thermal stability was assessed by differential scanning calorimetry (DSC). Sponges were seeded with human adipose derived stem cells to assess chondro-inductive potential of collagen sponges after 7, 14 and 21 days of culture. In conclusion, collagen sponges support the proliferation and differentiation of human adipose derived stem cells to different extents


Bone & Joint Research
Vol. 13, Issue 10 | Pages 596 - 610
21 Oct 2024
Toegel S Martelanz L Alphonsus J Hirtler L Gruebl-Barabas R Cezanne M Rothbauer M Heuberer P Windhager R Pauzenberger L

Aims. This study aimed to define the histopathology of degenerated humeral head cartilage and synovial inflammation of the glenohumeral joint in patients with omarthrosis (OmA) and cuff tear arthropathy (CTA). Additionally, the potential of immunohistochemical tissue biomarkers in reflecting the degeneration status of humeral head cartilage was evaluated. Methods. Specimens of the humeral head and synovial tissue from 12 patients with OmA, seven patients with CTA, and four body donors were processed histologically for examination using different histopathological scores. Osteochondral sections were immunohistochemically stained for collagen type I, collagen type II, collagen neoepitope C1,2C, collagen type X, and osteocalcin, prior to semiquantitative analysis. Matrix metalloproteinase (MMP)-1, MMP-3, and MMP-13 levels were analyzed in synovial fluid using enzyme-linked immunosorbent assay (ELISA). Results. Cartilage degeneration of the humeral head was associated with the histological presentation of: 1) pannus overgrowing the cartilage surface; 2) pores in the subchondral bone plate; and 3) chondrocyte clusters in OmA patients. In contrast, hyperplasia of the synovial lining layer was revealed as a significant indicator of inflammatory processes predominantly in CTA. The abundancy of collagen I, collagen II, and the C1,2C neoepitope correlated significantly with the histopathological degeneration of humeral head cartilage. No evidence for differences in MMP levels between OmA and CTA patients was found. Conclusion. This study provides a comprehensive histological characterization of humeral cartilage and synovial tissue within the glenohumeral joint, both in normal and diseased states. It highlights synovitis and pannus formation as histopathological hallmarks of OmA and CTA, indicating their roles as drivers of joint inflammation and cartilage degradation, and as targets for therapeutic strategies such as rotator cuff reconstruction and synovectomy. Cite this article: Bone Joint Res 2024;13(10):596–610


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 58 - 58
2 Jan 2024
Camarero-Espinosa S
Full Access

The anterior cruciate ligament (ACL) is the connective tissue located at the end of long bones providing stability to the knee joint. After tear or rupture clinical reconstruction of the tissue remains a challenge due to the particular mechanical properties required for proper functioning of the tissue. The outstanding mechanical properties of the ACL are characterized by a viscoelastic behavior responsible of the dissipation of the loads that are transmitted to the bone. These mechanical properties are the result of a very specialized graded extracellular matrix that transitions smoothly between the heterotypic cells, stiffness and composition of the ACL and the adjacent bone. Thus, mimicking the zonal biochemical composition, cellular phenotype and organization are key to reset the proper functioning of the ACL. We have previously shown how the biochemical composition presented to cells in electrospun scaffolds results in haptokinesis, reverting contact-guidance effects. [1]. Here, we demonstrate that contact guidance can also be disrupted by structural parameters in aligned wavy scaffolds. The presentation of a wavy fiber arrangement affected the cell organization and the deposition of a specific ECM characteristic of fibrocartilage. Cells cultured in wavy scaffolds grew in aggregates, deposited an abundant ECM rich in fibronectin and collagen II, and expressed higher amounts of collagen II, X and tenomodulin as compared to aligned scaffolds. In-vivo implantation in rabbits of triphasic scaffolds accounting for aligned-wavy-aligned zones showed a high cellular infiltration and the formation of an oriented ECM, as compared to traditional aligned scaffolds. [2]


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 78 - 78
2 Jan 2024
Larrañaga-Jaurrieta G Abarrategui A Camarero-Espinosa S
Full Access

In the native articular cartilage microenvironment, chondrocytes are constantly subjected to dynamic physical stimuli that maintains tissue homeostasis. They produce extra cellular matrix (ECM) components such as collagens (type II mainly, 50-75%), proteoglycans (10-30%) and other type of proteins. 1. . While collagen offers a large resistance in tension, proteoglycans are the responsible of the viscoelastic response under compression due to the negative charge they confer to the ECM allowing it to entrap a large amount of interstitial fluid. In pathologic states (e.g. osteoarthritis), this ECM is degenerated and the negative charge becomes unbalanced, losing the chondroprotective properties and resulting on an overloaded chondrocytes that further degenerate the matrix. Low-Intensity Pulsed Ultrasound Stimulation (LIPUS) has been used to generate acoustic (pressure) waves that create bubbles that collapse with cells, inducing a stimulus that can modulate cell response. 2. This mechanical stimulation promotes the expression of type II collagen, type X collagen, aggrecan and TGF-β, appearing as a great strategy to regenerate cartilage. However, current strategies make use of extrinsic forces to stimulate cartilage formation overlooking the physico-chemical properties of the degenerated cartilage, resulting in an excessive load-transfer to chondrocytes and the consequent hypertrophy and degeneration. Here, interpenetrated networks (IPNs) with different compositions were created using methacrylated gelatin (GelMA), to mimic the collagen, and alginate functionalized with tyramine (Alg-tyr) to mimic glycosaminoglycans and to introduce a negative charge in the model. Within the matrix chondrocytes where encapsulated and stimulated under different conditions to identify the ultrasound parameters that enhance tissue formation. Samples with and without stimulation were compared analysing the expression and deposition of collagen II, aggrecan, collagen X and TGF-β. The results suggested that the chondrogenic marker expression of the samples stimulated for 10 minutes per day for 28 days, was two times higher overall in all of the cases, which was correlated to the tissue formation detected. Acknowledgments: The authors would like to thank the Basque Government for the “Predoctoral Training Program for Non-Doctoral Research Staff 2021-2022” (Grant ref.: PRE_2021_1_0403). This work was supported by the RETOS grant PID2020-114901RA-I00 of the Ministry of Science and Innovation (MICINN)


Bone marrow-derived mesenchymal stromal stem cells (BMSCs) are a promising cell source for treating articular cartilage defects. Quality of cartilaginous repair tissue following BMSC transplantation has been shown to correlate with functional outcome. Therefore, tissue-engineering variables, such as cell expansion environment and seeding density of scaffolds, are currently under investigation. The objectives of this study were to demonstrate chondrogenic differentiation of BMSCs seeded within a collagen I scaffold following isolation and expansion in two-dimensional (2D) and three-dimensional (3D) environments, and assess the impact of seeding density on in vitro chondrogenesis. It was hypothesised that both expansion protocols would produce BMSCs capable of hyaline-like chondrogenesis with an optimal seeding density of 10 million cells/cm3. Ovine BMSCs were isolated in a 2D environment by plastic adherence, expanded to passage two in flasks containing expansion medium, and seeded within collagen I scaffolds (6 mm diameter, 3.5 mm thickness and 0.115 ± 0.020 mm pore size; Integra LifeSciences Corp.) at densities of 50, 10, 5, 1, and 0.5 million BMSCs/cm3. For 3D isolation and expansion, bone marrow aspirates containing known quantities of mononucleated cells (BMNCs) were seeded on scaffolds at 50, 10, 5, 1, and 0.5 million BMNCs/cm3 and cultured in expansion medium for an equivalent duration to 2D expansion. All cell-scaffold constructs were differentiated in vitro in chondrogenic medium containing transforming growth factor-beta three for 21 days and assessed with RT-qPCR, safranin O staining, histological scoring using the Bern Score, collagen immunofluorescence, and glycosaminoglycan (GAG) quantification. Two dimensional-expanded BMSCs seeded at all densities were capable of proteoglycan production and displayed increased expressions of aggrecan and collagen II mRNA relative to pre-differentiation controls. Collagen II deposition was apparent in scaffolds seeded at 0.5–10 million BMSCs/cm3. Chondrogenesis of 2D-expanded BMSCs was most pronounced in scaffolds seeded at 5–10 million BMSCs/cm3 based on aggrecan and collagen II mRNA, safranin O staining, Bern Score, total GAG, and GAG/DNA. For 3D-expanded BMSC-seeded scaffolds, increased aggrecan and collagen II mRNA expressions relative to controls were noted with all densities. Proteoglycan deposition was present in scaffolds seeded at 0.5–50 million BMNCs/cm3, while collagen II deposition occurred in scaffolds seeded at 10–50 million BMNCs/cm3. The highest levels of aggrecan and collagen II mRNA, Bern Score, total GAG, and GAG/DNA occurred with seeding at 50 million BMNCs/cm3. Within a collagen I scaffold, 2D- and 3D-expanded BMSCs are capable of hyaline-like chondrogenesis with optimal cell seeding densities of 5–10 million BMSCs/cm3 and 50 million BMNCs/cm3, respectively. Accordingly, these densities could be considered when seeding collagen I scaffolds in BMSC transplantation protocols


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 143 - 143
2 Jan 2024
Pattappa G
Full Access

The biological understanding for the disease progression osteoarthritis (OA) has uncovered specific biomarkers from either synovial fluid, articular chondrocytes or synoviocytes that can be used to diagnose the disease. Examples of these biomarkers include interleukin-1β (IL-1β) or collagen II fragments (1, 2). In parallel, isolation of chondrocytes or bone marrow derived mesenchymal stromal cells (MSCs) has yielded cell-based strategies that have shown long- term beneficial effects in a specific cohort of patients, specifically in traumatic cartilage lesions (2). This latter finding shows that patient stratification of OA is an important tool to both match patients for a specific treatment and to develop novel therapies, especially disease modifying drugs. In order to create disease stage specific therapies, the use of next generation analysis tools such as RNAseq and metabolomics, has the potential to decipher specific cellular and molecular endotypes. Alongside greater understanding of the clinical phenotype (e.g. imaging, pain, co- morbidities), therapies can be designed to alleviate the symptoms of OA at specific points of the disease in patients. This talk will outline the current biological understanding of OA and discuss how patient stratification could assist in the design of innovative therapies for the disease. Acknowledgements: This presentation was supported by the COST action, CA21110 – Building an open European Network on Osteoarthritis Research (NetwOArk)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 28 - 28
2 Jan 2024
Angrisani N Helmholz H Windhagen H von der Ahe C Scheper V Willumeit-Römer R Chathoth B Reifenrath J
Full Access

There are no efficient treatment options for osteoarthritis (OA) that delay further progression. Besides osteoinduction, there is growing evidence of also anti-inflammatory, angiogenetic and neuroprotective effects of biodegradable magnesium-based biomaterials. Their use for the treatment of cartilage lesions in contrast is not well-evaluated yet. Mg-cylinders were analysed in an in vitro and in vivo OA model. In vitro, SCP-1 stem cell line was analysed under inflammatory conditions and Mg-impact. In vivo, small Mg- and WE43 alloy-cylinders (1mm × 0,5mm) were implanted into the subchondral bone of the knee joint of 24 NZW rabbits after establishment of OA. As control, another 12 rabbits received only drill-holes. µCT-scan were performed and assessed for changes in bone volume and density. After euthanasia, cartilage was evaluated macroscopically and histologically after Safranin-O-staining. Furthermore, staining with CD271 directed antibody was performed to assess neuro-reactivity. In vitro, an increased gene expression of extracellular matrix proteins as collagen II or aggrecan even under inflammatory conditions was observed under Mg-impact. In vivo, µCT evaluation revealed twice-elevated values for bone volume in femoral condyles with Mg-cylinders compared to controls while density remained unchanged. Cartilage showed no significant differences between the groups. Mg- and WE-samples showed significantly lower levels of CD271+ cells in the cartilage and bone of the operated joints than in non-operated joints, which was not the case in the Drilling-group. Furthermore, bone in operated knees of Drilling-group showed a strong trend to an increase in CD271+ cells compared to both Cylinder-groups. Counting of CD271+ vessels revealed that this difference was attributable to a higher amount of these vessels. The in vitro results indicate a potential cartilage regenerative activity of the degradable Mg-based material. While so far there was no positive effect on the cartilage itself in vivo, implantation of Mg-cylinders seemed to reduce pain-mediating vessels. Acknowledgements: This work is funded by the German Research Foundation (DFG, project number 404534760). We thank Björn Wiese for production of the cylinders


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 148 - 148
11 Apr 2023
Kopinski-Grünwald O Guillaume O Arslan A Van Vlierberghe S Ovsianikov A
Full Access

In the field of tissue engineering (TE), mainly two approaches have been widely studied and utilised throughout the last two decades. Ovsianikov et al. proposed a third strategy for tissue engineering to combine the advantages of the scaffold-based and scaffold-free approach [1]. We utilise the third strategy for TE by fabrication of cell spheroids that are reinforced by microscaffolds, called tissue units (TUs). Aim of the presented study is to differentiate TUs towards a chondrogenic phenotype to show the self-assembly of a millimetre sized cartilage-like tissue in a bottom-up TE approach in vitro. Two-Photon polymerization (2PP) was utilised to fabricate highly porous microscaffolds with a diameter of 300 µm. The biocompatible and biodegradable, resin Degrad INX (supplied from Xpect INX, Ghent, Belgium) was used for 3D-printing. Each microscaffold was seeded with 4000 human adipose derived stem cells (hASCs) in low-adhesive 96-well plates to allow spheroid formation. TUs were differentiated towards the chondrogenic lineage by application of chondrogenic media, subsequently merged in a cylindrical agarose mold, to fuse into a connected tissue with a diameter of ~1.8 mm and a height of 8 mm. The characterization of TUs differentiated towards the chondrogenic phenotype included gene expression and protein analysis. Furthermore, immunohistochemically staining for Collagen II and Alcian blue staining were performed to investigate the matrix deposition and fusion of the self-assembled tissue. Our results suggest that the utilised method could be a promising approach for a variety of tissue engineering approaches, due to the good applicability to a defect side combined with the self-assembly properties of the TUs. Furthermore, the differentiation potential of hASCs is not limited to chondrogenic lineages only, which could pave the way to further TE applications in the future. Acknowledgements:. This research work was financially supported by the European Research Council (Consolidator Grant 772464 A.O.)


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 87 - 87
1 Mar 2021
Graceffa V Govaerts A Lories R Jonkers I
Full Access

In a healthy joint, mechanical loading increases matrix synthesis and maintains cell phenotype, while reducing catabolic activities. It activates several pathways, most of them yet largely unknown, with integrins, TGF-β, canonical (Erk 1/2) and stress-activated (JNK) MAPK playing a key role. Degenerative joint diseases are characterized by Wnt upregulation and by the presence of proteolytic fibronectin fragments (FB-fs). Despite they are known to impair some of the aforementioned pathways, little is known on their modulatory effect on cartilage mechanoresponsiveness. This study aims at investigating the effect of mechanical loading in healthy and in vitro diseased cartilage models using pro-hypertrophic Wnt agonist CHIR99021 and the pro-catabolic FB-fs 30 kDa. Human primary chondrocytes from OA patients have been grown in alginate hydrogels for one week, prior to be incubated for 4 days with 3μM CHIR99021 or 1 μM FB-fs. Human cartilage explants isolated from OA patients have incubated 4 days with 3 μM CHIR99021 or 1 μM FB-fs. Both groups have then been mechanically stimulated (unconfined compression, 10% displacement, 1.5 hours, 1 Hz), using a BioDynamic bioreactor 5270 from TA Instruments. Expression of collagen type I, II and X, aggrecan, ALK-1, ALK-5, αV, α5 and β1 integrins, TGF-β1 have been assessed by Real Time-PCR and normalized with the expression of S29. Percentage of phosphorylated Smad2, Smad1 and JNK were determined through western blot. TGF-β1 content was quantified by sandwich ELISA; MMP-13 and GAG by western blot and DMMB assay, respectively. At least three biological replicates were used. ANOVA test was used for parametric analysis; Kruskal-Wallis and Mann-Whitney post hoc test for non-parametric. Preliminary data show that compression increased collagen II expression in control, but not in CHIR99021 and FB-fs pre-treated group (Fig. 1A-B). This was associated with downregulation of β1-integrin expression, which is the main collagen receptor and further regulates collagen II expression, suggesting inhibition of Erk1/2 pathway. A trend of increase expression of collagen type X after mechanical loading was observed in CHIR and FB-fs group. ALK-1 and ALK-5 showed a trend toward stronger upregulation in CHIR99021 group after compression, suggesting the activation of both Smad1/5/8 and Smad 2/3 pathways. To further investigate pathways leading to these different mechano-responses, the phosphorylation levels of Smad1 and Smad2, Erk1/2 and JNK proteins are currently being studied. Preliminary results show that Smad2, Smad1 and JNK protein levels increased in all groups after mechanical loading, independently of an increase in TGF-β1 expression or content. Compression further increased phosphorylation of Smad2, but not of Smad1, in all groups


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 81 - 81
17 Apr 2023
Rambacher K Gennrich J Schewior R Lang S Pattappa G Zihlmann C Stiefel N Zellner J Docheva D Angele P
Full Access

Meniscus tears have been treated using partial meniscectomy to relieve pain in patients, although this leads to the onset of early osteoarthritis (OA). Cell-based therapies can help preserve the meniscus, although the presence of inflammatory cytokines compromises clinical outcomes. Anti-inflammatory drugs (e.g. celecoxib), can help to reduce pain in patients and in vitro studies suggest a beneficial effect on cytokine inhibited matrix content. Previously, we have demonstrated that the inhibitory effects of IL-1β can be countered by culture under low oxygen tension or physioxia. The present study sought to understand whether physioxia, celecoxib or combined application can counter the inhibitory effects IL-1β inhibited meniscus cells. Human avascular and vascular meniscus cells (n =3) were isolated and expanded under 20% (hyperoxia) or 2% (physioxia) oxygen. Cells were seeded into collagen scaffolds (Geistlich, Wolhusen) and cultured for 28 days either in the presence of 0.1ng/mL IL-1β, 5µg/mL celecoxib or both under their expansion oxygen conditions. Histological (DMMB, collagen I and collagen II immunostaining), GAG content and gene expression analysis was evaluated for the scaffolds. Under hyperoxia, meniscus cells showed a significant reduction in GAG content in the presence of IL-1β (*p < 0.05). Celecoxib alone did not significantly increase GAG content in IL-1β treated cultures. In contrast, physioxic culture showed a donor dependent increase in GAG content in control, IL-1β and celecoxib treated cultures with corresponding histological staining correlating with these results. Additionally, gene expression showed an upregulation in COL1A1, COL2A1 and ACAN and a downregulation in MMP13 and ADAMTS5 under physioxia for all experimental groups. Physioxia alone had a stronger effect in countering the inhibitory effects of IL-1β treated meniscus cells than celecoxib under hyperoxia. Preconditioning meniscus cells under physioxia prior to implantation has the potential to improve clinical outcomes for cell-based therapies of the meniscus


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 60 - 60
2 Jan 2024
Decarli M Seijas-Gamardo A Morgan F Wieringa P Baker M Silva J Moraes A Lorenzo M Mota C
Full Access

Cartilage lesions often undergo irreversible progression due to low self-repair capability of this tissue. Tissue engineered approaches based in extrusion bioprinting of constructs loaded with stem cell spheroids may offer valuable alternatives for the treatment of cartilage lesions. Human mesenchymal stromal cell (hMSC) spheroids can be chondrogenically differentiated faster and more efficiently than single cells. This approach allows obtaining larger tissues in a rapid, controlled and reproducible way. However, it is challenging to control tissue architecture, construct stability, and cell viability during maturation. In this study we aimed at the development of a reproducible bioprinting process followed by post-bioprinting chondrogenic differentiation procedure using large quantities of hMSC spheroids encapsulated in a xanthan gum-alginate hydrogel. Multi-layered constructs were bioprinted, ionically crosslinked, and chondrogenically differentiated for 28 days. The expression of glycosaminoglycan, collagen II and IV were observed. After 56 days in culture, the bioprinted constructs were still stable and show satisfactory cell metabolic activity with profuse extracellular matrix production. These results showed a promising procedure to obtain 3D cartilage-like constructs that could be potential use as stable chondral tissue implants for future therapies. Acknowledgments: The National Council for Scientific and Technological Development (CNPq, Brazil – Grants # 314 724/2021-4, 307 829/2018-9, 430 860/2018-8, 142 050/2018-0 and 465 656/2014-5), the Coordination for the Improvement of Higher Educational Personnel (CAPES, Brazil – PrInt 88 887.364849/2019-00 and PrInt 88 887.310405/2018-00), the Fund for Support to Teaching, Research and Extension from the University of Campinas (FAEPEX/UNICAMP, Brazil – Grants # 2921/18, 2324/21), and the European Union's Horizon 2020 JointPromise project – Precision manufacturing of microengineered complex joint implants, under grant agreement 874 837 are acknowledged for the financial support of this study


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 75 - 75
4 Apr 2023
Numpaisal P Khatsee S Arunsan P Ruksakulpiwat Y
Full Access

Silk fibroin (SF) has been used as a scaffold for cartilage tissue engineering. Different silkworms strain produced different protein. Also, molecular weight of SF depends on extraction method. We hypothesised that strain of silkworm and method of SF extraction would effect biological properties of SF scaffold. Therefore, cell viability and chondrogenic gene expression of human chondrogenic progenitor cells (HCPCs) treated with SF from 10 silkworm strains and two common SF extraction methods were investigate in this study. Twenty g of 10 strains silk cocoons were separately degummed in 0.02M Na2CO3 solution and dissolved in 100๐C for 30 minutes. Half of them were then dissolved in CaCl2/Ethanol/H2O [1:2:8 molar ratio] at 70±5๐C (method 1) and other half was dissolved in 46% w/v CaCl2 at 105±5๐C (method 2) for 4 hours. HCPCs were cultured in SF added cultured medial according to strain and extraction method. Cell viability at day 1, 3, and 7, were determined. Expression of collagen I, collagen II, and aggrecan at day 7 and 14, was studied. All experiment were done in triplicated samples. Generally, method 1 SF extraction showed higher cell viability in all strains. Cell viability from Nanglai Saraburi, Laung Saraburi and Nangtui strains were higher than those without SF in every time point while Wanasawan and J108 had higher viability at day 1 and decreased by time. Expression in collagen 1, collagen 2 and aggrecan in method 1 are higher at day 7 and day 14. Collagen 1 expression was highest in Nangnoi Srisaket, followed by Laung Saraburi and Nanglai Saraburi in day 7. Nangnoi Srisaket also had highest expression at day 14, followed by Nanglai Saraburi and Laung Saraburi respectively. Nangseaw had highest collagen 2 expression, follow by Laung Saraburi and Nangnoi Srisaket respectively. Higher aggrecan gene expression of Tubtimsiam, Wanasawan, UB 1 and Nangnoi Srisaket was observed at day 7 and increased expression of all strains at day 14. SF extraction using CaCl2/Ethanol/H2O offered better cell viability and chondrogenic expression. Nangseaw, Laung Saraburi and Nangnoi Srisaket strains expressed more chondrogenic phenotype


Bone & Joint Research
Vol. 12, Issue 3 | Pages 202 - 211
7 Mar 2023
Bai Z Shou Z Hu K Yu J Meng H Chen C

Aims. This study was performed to explore the effect of melatonin on pyroptosis in nucleus pulposus cells (NPCs) and the underlying mechanism of that effect. Methods. This experiment included three patients diagnosed with lumbar disc herniation who failed conservative treatment. Nucleus pulposus tissue was isolated from these patients when they underwent surgical intervention, and primary NPCs were isolated and cultured. Western blotting, reverse transcription polymerase chain reaction, fluorescence staining, and other methods were used to detect changes in related signalling pathways and the ability of cells to resist pyroptosis. Results. Western blot analysis confirmed the expression of cleaved CASP-1 and melatonin receptor (MT-1A-R) in NPCs. The cultured NPCs were identified by detecting the expression of CD24, collagen type II, and aggrecan. After treatment with hydrogen peroxide, the pyroptosis-related proteins NLR family pyrin domain containing 3 (NLRP3), cleaved CASP-1, N-terminal fragment of gasdermin D (GSDMD-N), interleukin (IL)-18, and IL-1β in NPCs were upregulated, and the number of propidium iodide (PI)-positive cells was also increased, which was able to be alleviated by pretreatment with melatonin. The protective effect of melatonin on pyroptosis was blunted by both the melatonin receptor antagonist luzindole and the nuclear factor erythroid 2–related factor 2 (Nrf2) inhibitor ML385. In addition, the expression of the transcription factor Nrf2 was up- or downregulated when the melatonin receptor was activated or blocked by melatonin or luzindole, respectively. Conclusion. Melatonin protects NPCs against reactive oxygen species-induced pyroptosis by upregulating the transcription factor Nrf2 via melatonin receptors. Cite this article: Bone Joint Res 2023;12(3):202–211


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 23 - 23
1 Jul 2020
Liang T Luo Z
Full Access

The detailed biomechanical mechanism of annulus fibrosus under abnormal loading is still ambiguous, especially at the micro and nano scales. This study aims to characterize the alterations of modulus at the nano scale of individual collagen fibrils in annulus fibrosus after in-situ immobilization, and the corresponding micro-biomechanics of annulus fibrosus. An immobilization model was used on the rat tail with an external fixation device. Twenty one fully grown 12-week-old male Sprague-Dawley rats were used in this study. The rats were assigned to one of three groups randomly. One group was selected to be the baseline control group with intact intervertebral discs (n=7). In the other two groups, the vertebrae were immobilized with an external fixation device that fixed four caudal vertebrae (C7-C10) for 4 and 8 weeks, respectively. Four K-wires were fixed in parallel using two aluminum alloy cuboids which do not compress or stretch the target discs. The immobilized discs were harvested and then stained with hematoxylin/eosin, scanned using atomic force microscopy to obtain the modulus at both nano and micro scales, and analyzed the gene expression with real-time quantitative polymerase chain reaction. Significance of differences between the study groups was obtained using a two-way analysis of variance (ANOVA) with Fisher's Partial Least-Squares Difference (PLSD) to analyze the combined influence of immobilization time and scanning region. Statistical significance was set at P≤0.05. Compared to the control group, the inner layer of annulus fibrosus presented significant disorder and hyperplasia after immobilization for 8 weeks, but not in the 4 week group. The fibrils in inner layer showed an alteration in elastic modulus from 91.38±20.19MPa in the intact annulus fibrosus to 110.64±15.58MPa (P<0.001) at the nano scale after immobilization for 8 weeks, while the corresponding modulus at the micro scale also underwent a change from 0.33±0.04MPa to 0.47±0.04MPa (P<0.001). The upregulation of collagen II from 1±0.03 in control to 1.22±0.03 in 8w group (P = 0.003) was induced after immobilization, while other genes expression showed no significant alteration after immobilization for both 4 and 8 weeks compared to the control group (P>0.05). The biomechanical properties at both nano and micro scales altered in different degrees between inner and outer layers in annulus fibrosus after immobilization for different times. Meanwhile, the fibril arrangement disorder and the upregulation of collagen II in annulus fibrosus were observed using hematoxylin/eosin staining and real-time RT-PCR, respectively. These results indicate that immobilization not only influenced the individual collagen fibril at the nano scale, but also suggested alterations of micro-biomechanics and cell response. This work provides a better understanding of IVD degeneration after immobilization and benefits to the clinical treatment related to disc immobilization


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 245 - 245
1 Jul 2011
Maragh K Bater J Secretan C Bagnall KM Jomha NM
Full Access

Purpose: Current techniques for articular cartilage repair remain suboptimal. The best technique involves the introduction of cultured chondrocytes into the injury site. Experimental results of current chondrocyte culture and expansion techniques (passaging) have shown phenotypic alteration resulting in fibroblast-like cells. Therefore, treatment methods that propose the transplantation of cultured chondrocytes might be transplanting fibroblast-like cells instead of chondrocytes. This experiment explored the difference in genetic expression of chondrocytes left at confluence compared to chondrocytes that were passaged as performed in current culture techniques. It was hypothesized that chondrocytes left at confluence would maintain their collagen I and collagen II gene expression over time. Method: Fresh normal human articular cartilage was collected from deceased donor patients. The matrix was digested and the chondrocytes were plated in monolayer to create two groups. The first group was cultured and passaged 2? at confluence seven times. The second group was cultured at confluence and left for seven weeks, with medium changes every 3–4 days without passaging. At weekly intervals RNA was extracted from cells in both groups and analyzed with real time PCR, probing specifically for the genes responsible for the production of collagen I, collagen II, aggrecan, and GAPDH. This was done in duplicate. Results: Collagen II gene expression was maintained over seven weeks in cells left at confluence but was decreased in passaged cells. Collagen I gene expression decreased over seven weeks in cells left at confluence, but remained the same in passaged cells. Aggrecan gene expression remained the same in both groups. Conclusion: Current culture and expansion techniques that employ passaging (as used in clinical scenarios) result in significant alterations in gene expression that are inconsistent with the current definition of a “chondrocyte”. Culturing chondrocytes at confluence can produce gene expression more similar to native chondrocytes but even these cells have expression of collagen type I that should not be present in chondrocytes. The results of this study suggest that further investigation is required to develop chondrocyte culture and expansion techniques that minimize the de-differentiation of chondrocytes by maintaining collagen II gene expression and eliminating/preventing collagen I gene expression


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 23 - 23
1 Nov 2018
Pattappa G Zellner J Johnstone B Docheva D Angele P
Full Access

Mesenchymal Stem Cells (MSCs) are a candidate cell type for treating osteoarthritic focal defects. In vivo, cartilage and bone marrow reside under a low oxygen tension, between 2–7% oxygen or physioxia, that has been shown to enhance MSC chondrogenesis. However, chondrogenesis is inhibited in the presence of IL-1. Here, it was hypothesized that physioxia reduces IL-1 inhibited chondrogenesis. Human MSCs (Mean age, 32 years; n = 9) were split equally for expansion under either 2% (physioxia) or 20% (hyperoxia) oxygen. Chondrogenic pellets (2 × 10. 5. MSCs/pellet) were formed and cultured in the presence of 10 ng/ml TGF-b. 1. and in combination with either 0.1 or 0.5 ng/ml IL-1 under their respective expansion conditions. Pellets were assessed for their wet weight, GAG and collagen II content and evaluated histologically (Collagen X and MMP-13). Statistical analysis was performed using a Two-way ANOVA with Tukey post-hoc test, significant differences stated when p < 0.05. A significant dose-dependent IL-1 inhibition in chondrogenesis was observed for pellet wet weight and GAG content under hyperoxia (p < 0.05). Physioxia alone significantly increased wet weight, GAG and collagen II content (p < 0.05) compared to hyperoxia. A donor-dependant response was observed, whereby 80% of donors responded to physioxia and their analysis showed significant increases in wet weight and GAG content in the presence IL-1(p < 0.05). Furthermore, reduced hypertrophy marker expression (Collagen X and MMP-13) was observed under physioxia in the presence of IL-1. The molecular signalling mechanisms controlling these responses are to be investigated


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 1 - 1
1 Dec 2020
Gögele CL Kerling V Lenhart A Wiltzsch S Schäfer-Eckart K Minnich B Weiger TM Schulze-Tanzil G
Full Access

Cartilage injuries often represent irreversible tissue damage because cartilage has only a low ability to regenerate. Thus, cartilage loss results in permanent damage, which can become the starting point for osteoarthritis. In the past, bioactive glass scaffolds have been developed for bone replacement and some of these variants have also been colonized with chondrocytes. However, the hydroxylapaptite phase that is usually formed in bioglass scaffolds is not very suitable for cartilage formation (chondrogenesis). This interdisciplinary project was undertaken to develop a novel slowly degrading bioactive glass scaffold tailored for cartilage repair by resembling the native extracellular cartilage matrix (ECM) in structure and surface properties. When colonized with articular chondrocytes, the composition and topology of the scaffolds should support cell adherence, proliferation and ECM synthesis as a prerequisite for chondrogenesis in the scaffold. To study cell growth in the scaffold, the scaffolds were colonized with human mesenchymal stromal cells (hMSCs) and primary porcine articular chondrocytes (pACs) (27,777.8 cells per mm. 3. ) for 7 – 35 d in a rotatory device. Cell survival in the scaffold was determined by vitality assay. Scanning electron microscopy (SEM) visualized cell ultramorphology and direct interaction of hMSCs and pACs with the bioglass surface. Cell proliferation was detected by CyQuant assay. Subsequently, the production of sulphated glycosaminoglycans (sGAGs) typical for chondrogenic differentiation was depicted by Alcian blue staining and quantified by dimethylmethylene blue assay assay. Quantitative real-time polymerase chain reaction (QPCR) revealed gene expression of cartilage-specific aggrecan, Sox9, collagen type II and dedifferentiation-associated collagen type I. To demonstrate the ECM-protein synthesis of the cells, the production of collagen type II and type I was determined by immunolabelling. The bioactive glass scaffold remained stable over the whole observation time and allowed the survival of hMSCs and pACs for 35 days in culture. The SEM analyses revealed an intimate cell-biomaterial interaction for both cell types showing cell spreading, formation of numerous filopodia and ECM deposition. Both cell types revealed initial proliferation, decreasing after 14 days and becoming elevated again after 21 days. hMSCs formed cell clusters, whereas pACs showed an even distribution. Both cell types filled more and more the pores of the scaffold. The relative gene expression of cartilage-specific markers could be proven for hMSCs and pACs. Cell associated sGAGs deposition could be demonstrated by Alcian blue staining and sGAGs were elevated in the beginning and end of the culturing period. While the production of collagen type II could be observed with both cell types, the synthesis of aggrecan could not be detected in scaffolds seeded with hMSCs. hMSCs and pACs adhered, spread and survived on the novel bioactive glass scaffolds and exhibited a chondrocytic phenotype