Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 32 - 32
1 Dec 2022
Fransen B Bengoa F Neufeld M Sheridan G Garbuz D Howard L
Full Access

With the introduction of highly crosslinked polyethylene (HXLPE) in total hip arthroplasty (THA), orthopaedic surgeons have moved towards using larger femoral heads at the cost of thinner liners to decrease the risk of instability. Several short and mid-term studies have shown minimal liner wear with the use HXLPE liners, but the safety of using thinner HXPLE liners to maximize femoral head size remains uncertain and concerns that this may lead to premature failure exist. Our objective was to analyze the outcomes for primary THA done with HXLPE liners in patients who have a 36-mm head or larger and a cup of 52-mm or smaller, with a minimum of 10-year follow-up. Additionally, linear and volumetric wear rates of the HXLPE were evaluated in those with a minimum of seven-year follow-up. We hypothesized that there would be minimal wear and good clinical outcome. Between 2000 and 2010, we retrospectively identified 55 patients that underwent a primary THA performed in a high-volume single tertiary referral center using HXLPE liners with 36-mm or larger heads in cups with an outer diameter of or 52-mm or smaller. Patient characteristics, implant details including liner thickness, death, complications, and all cause revisions were recorded. Patients that had a minimum radiographic follow-up of seven years were assessed radiographically for linear and volumetric wear. Wear was calculated using ROMAN, a validated open-source software by two independent researchers on anteroposterior X-rays of the pelvis. A total of 55 patients were identified and included, with a mean age of 74.8 (range 38.67 - 95.9) years and a mean BMI of 28.98 (range 18.87 - 63-68). Fifty-one (94.4%) of patients were female. Twenty-six (47.7%) patients died during the follow-up period. Three patients were revised, none for liner wear, fracture or dissociation. Twenty-two patients had a radiographic follow-up of minimum seven years (mean 9.9 years, min-max 7.5 –13.7) and were included in the long-term radiographic analysis. Liner thickness was 5.5 mm at 45 degrees in all cases but one, who had a liner thickness of 4.7mm, and all patients had a cobalt-chrome head. Cup sizes were 52mm (n=15, 68%) and 50mm (n=7, 32%). Mean linear liner wear was 0.0470 mm/year (range 0 - 0.2628 mm) and mean volumetric wear was 127.69 mm3/year (range 0 - 721.23 mm3/year). Using HXLPE liners with 36-mm heads or bigger in 52-mm cups or smaller is safe, with low rates of linear and volumetric wear in the mid to long-term follow-up. Patients did not require revision surgery for liner complications, including liner fracture, dissociation, or wear. Our results suggest that the advantages of using larger heads should outweigh the potential risks of using thin HXLPE liners


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 57 - 57
1 Nov 2016
Lanting B Tan S Lau A Teeter M Del Balso C McCalden R MacDonald S Vasarhelyi E McAuley J Naudie D Howard J
Full Access

Trunnionosis in modular hip arthroplasty has recently been recognised to be clinically important. Gaining an understanding of how the material interface at the head-trunnion affects the tribology at the modular junctions has current clinical implications as well as an implication on future implant selection and material choice. This matched-cohort study aims to compare tribocorrosion between ceramic and cobalt-chromium trunnions and to investigate other factors that contribute to the difference in tribocorrosion if present. All hip prostheses retrieved between 1999 and 2015 at one centre were reviewed. Fifty two ceramic heads were retrieved, and these were matched to a cobalt-chromium cohort according to taper design, head size, neck length and implantation time in that order. The two cohorts were similar in male:female ratio (p=0.32) and body mass index (p=0.15) though the ceramic group was younger than the cobalt-chromium group (56.6 (+/−)13.5 years for ceramic group vs 66.3 (+/−14.4) years for cobalt-chromium group; p=0.001). There was no significant difference in the reasons for revision between the two groups (p=0.42). The femoral head trunnions were examined by two independent observers using a previously published 4-point scoring technique. The trunnions were divided into three zones: apex, middle and base. The observers were blinded to clinical and manufacturing data where possible. Ceramic head trunnions demonstrated a lower median fretting and corrosion score at the base zone (p<0.001), middle zone (p<0.001) and in the combined score (p<0.001). In a subgroup analysis by head size, ceramic heads had a lower fretting and corrosion score at 28mm head diameter (p<0.001). Within the ceramic group, taper design had a significant effect on fretting and corrosion in the apex zone (p=0.04). Taper design also had a similar effect in the cobalt-chromium group in the apex zone (p=0.03). For the ceramic trunnions, the largest effect was contributed by the difference between the 11/13 taper and the 12/14 taper. For the cobalt-chromium trunnions, the largest effect was contributed by the difference between the 5 degree 38′ 37″ taper and type 1 taper. Ceramic head trunnions showed a significantly lower fretting and corrosion score as compared to cobalt-chromium trunnions. Ceramic heads had a lower score than cobalt-chromium heads at 28mm head diameter. Taper design had an effect on fretting and corrosion within each cohort


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 93 - 93
1 Jan 2016
Parekh J Gold J Noble P
Full Access

Introduction. Manifestation of high interface stresses coupled with micromotion at the interface can render the taper lock joint in a modular hip replacement prosthesis at risk for failure. Bending can lead to crevice formation between the trunnion and the head and can potentially expose the interface to the biological fluids, generating interface corrosion. Additionally, development of high stresses can cause the material to yield, ultimately leading to irreversible damage to the implant. The objective of this study is to elucidate the mechanical response of taper junction in different material combination assemblies, under the maximum loads applied during everyday activities. Methods. Computer simulations were executed using a verified FE model. A stable hexahedral mesh (33648 elements) was generated for the trunnion (taper size: 12/14mm) and a tetrahedral mesh (51182 elements) for the head (CoCr, size: 32mm). An assembly load of 4000N was applied along the trunnion axis followed by the application of a load of 230–4300N at 25° and 10° angle to the trunnion axis in the frontal and sagittal planes. A linear static solution was set up using Siemens NX Nastran. Two material combinations were tested - cobalt-chrome head with a titanium alloy trunnion and cobalt chrome head with a cobalt-chrome trunnion. Results. Table1 compares the results obtained from the simulation to those observed in experimental simulations performed under similar loading conditions in our lab. Larger vertical interface displacement was observed in the CoCr-CoCr assembly during toggle-inducing loads. The trunnion bending inside the femoral head was higher in the Ti-CoCr assembly (0.056) compared to the CoCr-CoCr assembly (0.027) with the overall bending of the Ti-CoCr assembly also observed to be much higher (Fig.1). Negligible difference between the stress measured in the femoral head and taper was observed (Fig.2). Discussion. Bending could potentially lead to the development of higher stresses especially under multiple cycles of loading. Fatigue and plastic deformation could result in irreparable damage to the interface leading to implant failure. Additionally, bending causes a separation of the interfaces at the trunnion-head junction, leading to crevice formation, triggering corrosion by exposure to the surrounding physiological environment. Thus, it is crucial that we understand the mechanics of the trunnion-head junction especially under conditions of functional loading


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 133 - 133
1 Feb 2017
Gascoyne T Turgeon T
Full Access

Introduction. Detailed analysis of retrieved total hip replacements (THRs) is valuable for assessing implant and material successes and failures. Reduction of bearing wear and corrosion and fretting of the head-neck trunnion is essential to implant durability and patient health. This research quantifies and characterizes taper and bearing surface damage on retrieved oxidized zirconium THRs. Methods. Initially, 11 retrieved oxidized zirconium femoral heads were examined along with their associated femoral stems. Relevant patient and retrieval data was collected from clinical charts and radiographs. Taper corrosion (Figure 1) and fretting damage (Figure 2) scoring was performed following the Dyrkacz [1] method. A coordinate measuring machine was used to obtain a detailed surface map of the male and female taper surfaces. Taper surface maps were best-fit with an idealized cone followed by volume subtraction to quantify the amount of material removed as a result of fretting and corrosion processes. Scanning electron microscopy was performed on select samples to identify specific damage modes. Unique surface bumps were noted on the articular surface of select femoral heads (Figure 3). Seventeen femoral heads were added to the analysis specifically for identification of these bumps. Articular surfaces were searched under SEM magnification and bumps were identified and counted. Parametric statistical correlations were performed with SAS v9.3. Results. Mean patient age was 61 years (Range: 35–95) with mean implantation period being 2.0 years (Range: 0.1–11.4) and mean body mass index of 29 kg/m. 2. (Range: 22–46). Revision for infection (n=11), peri-prosthetic fracture (n=5) and dislocation (n=5) were the main reasons for revision. Mean corrosion damage scores were 2.0 and 3.6 (head, neck) while mean fretting damage scores were 8.5 and 5.8 (head, neck). Fretting damage score was weakly correlated with implantation period (p=0.07) while corrosion damage score was not. Mean corrosion and fretting volume measured 0.40 mm. 3. and 0.87 mm. 3. (head, neck). Volume of corrosion and fretting damage did not correlate with implantation period; however neck volume correlated with inclination angle of the acetabular cup (p<0.01). Bearing diameter was not found to correlate with corrosion and fretting damage score or volume. The unique surface bumps were identified in 12 of 28 samples, with 3 samples having <10 bumps. Presence of these bumps did not appear to be related to bearing diameter, implantation period, or any damage metrics. Conclusion. Fretting damage was found to correlate with implantation period, suggesting that is a continuous in vivo process; however, this was not found for corrosion damage. Fretting damage volume correlated with acetabular cup angle; however, this may be coincidence as only 8 samples were included in the analysis. Overall, our corrosion damage scores (2.0–3.6) were lower than previously published values for 28mm & 36mm cobalt-chrome heads (4.5–13.1) [1]. However, our fretting damage scores (5.8–8.5) were higher than previously published (2.8–4.4) [1]. Greater fretting damage on the oxidized zirconium heads may be explained by the softer zirconium alloy compared to that of cobalt-chromium. Further subsurface investigation of the surface bumps is underway using a focused ion beam mill


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 52 - 52
1 Sep 2012
Faensen M Meyer O
Full Access

Bone preserving hip arthroplasty devices are appealingfor use in young patients because their high-demand activities and extended lifetimes makes the prospect of multiple revisions a reality. Therefore prostheses which ensure a straightforward revision with a low complication rate and good clinical outcome are favourable for young and active patients. Modern hip resurfacing serves these conditions and shows very good mid-term and now longer term (10 and 13 years) results especially in osteoarthritis. With other diagnoses like avascular necrosis, deformities of the femoral head in m. Perthes or slipped femoral epiphysis (SUFE), or in large bone cysts and erosive arthritis the bone stock of the femoral head gives insufficient support to the femoral component. In these conditions the alternative to a resurfacing procedure had been a stemmed total hip arthroplasty (THA). The Birmingham Mid Head Resection device (BMHR; Smith&Nephew Orthopaedics) is an alternative to resurfacing and to a stemmed THA. The BMHR device consists of an uncemented short stem made of titanium alloy and a large diameter cobalt-chrome head. The stem does not enter the femoral canal thus facilitating future revisions. The metal-on-metal bearing is the same as in resurfacing. The instrumentation allows switching from a planned BHR to the BMHR. The BMHR uses the unique anatomy of the head neck junction to prepare internally a cone that matches the frustoconical section of the BMHR stem. Thus a cement free press fit can be achieved. This maintains anatomical load transmission and avoids osteopenia of the proximal fenur. Since 2006 we have performed 662 BMHR implantations. The indications were osteoarthritis in about 70%, dysplasia in 20%, AVN 5,5%, posttraumatic OA in 3%, SUFE and m. Perthes in 1%. Complications occured in 3,2%. Fractures of the femoral neck occured in 8 patients, 4 of them caused by technical errors in the beginning, 3 because of higher risk indication. All revisions were performed successfully and the cup was retained. Low grade infections in 2 cases with one stage revision and 3 unstable cups needed to be reinserted. All revisions were successful. One early dislocation was treated by closed reduction, another remained unstable and was treated by THA. In conclusion we continue to use the BMHR to bridge the gap between resurfacing and stemmed THA because the complications we experienced are not inevitable and had become very rare with our growing experience