Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 93 - 93
1 Jan 2016
Parekh J Gold J Noble P
Full Access

Introduction. Manifestation of high interface stresses coupled with micromotion at the interface can render the taper lock joint in a modular hip replacement prosthesis at risk for failure. Bending can lead to crevice formation between the trunnion and the head and can potentially expose the interface to the biological fluids, generating interface corrosion. Additionally, development of high stresses can cause the material to yield, ultimately leading to irreversible damage to the implant. The objective of this study is to elucidate the mechanical response of taper junction in different material combination assemblies, under the maximum loads applied during everyday activities. Methods. Computer simulations were executed using a verified FE model. A stable hexahedral mesh (33648 elements) was generated for the trunnion (taper size: 12/14mm) and a tetrahedral mesh (51182 elements) for the head (CoCr, size: 32mm). An assembly load of 4000N was applied along the trunnion axis followed by the application of a load of 230–4300N at 25° and 10° angle to the trunnion axis in the frontal and sagittal planes. A linear static solution was set up using Siemens NX Nastran. Two material combinations were tested - cobalt-chrome head with a titanium alloy trunnion and cobalt chrome head with a cobalt-chrome trunnion. Results. Table1 compares the results obtained from the simulation to those observed in experimental simulations performed under similar loading conditions in our lab. Larger vertical interface displacement was observed in the CoCr-CoCr assembly during toggle-inducing loads. The trunnion bending inside the femoral head was higher in the Ti-CoCr assembly (0.056) compared to the CoCr-CoCr assembly (0.027) with the overall bending of the Ti-CoCr assembly also observed to be much higher (Fig.1). Negligible difference between the stress measured in the femoral head and taper was observed (Fig.2). Discussion. Bending could potentially lead to the development of higher stresses especially under multiple cycles of loading. Fatigue and plastic deformation could result in irreparable damage to the interface leading to implant failure. Additionally, bending causes a separation of the interfaces at the trunnion-head junction, leading to crevice formation, triggering corrosion by exposure to the surrounding physiological environment. Thus, it is crucial that we understand the mechanics of the trunnion-head junction especially under conditions of functional loading


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 31 - 31
1 May 2016
Haschke H Bishop N Witt F Eicke Y Morlock M
Full Access

Introduction. Wear and corrosion between head and stem tapers of modular hip implants have recently been related to clinical failures, possibly due to high friction moments in poorly lubricated joints [1–2]. In-vivo measurements have revealed reversing joint friction moments in the hip during a gait cycle [3], which may foster relative motion between the modular components. Blood, soft tissue or bone debris at the taper interface during assembly can lead to decreased stability or increased stress concentrations due to non-uniform loading [4]. The purpose of this study is to investigate the influence of taper contamination and the assembly force on the seating characteristic of the head on the stem incorporating realistic reversing joint friction moments. Methods. Cobalt chrome heads (M-SPEC, 36mm, +1.5mm; n=5) were assembled on titanium femoral stems (Corail 12/14, both components Depuy Synthes; n=5) by quasistatic axial push-on forces (F=0.5kN, 1kN, 2kN). Heads were modified by milling a flat plane, to which the joint load was applied alternately to point A and point B for 20 cycles to provide reversing moments (heel-strike FA=1971N, MA=5.4Nm; toe-off FB=807N, MB=4.6Nm; Fig. 1). All 6 degrees of freedom of relative displacement between head and stem were determined in the unloaded state and after each loading cycle. A coordinate measurement machine (accuracy ±2µm) was used to determine the components positions. Pull-off forces were measured after the last loading cycle. Each taper was tested in pristine condition and then contaminated with a bone chip (1.7±0.2mg). Results. Contaminated tapers exhibited significantly larger seating than clean samples for all assembly forces (p<0.001, Fig. 2). Higher assembly forces led to decreased translation and rotation (p<0.001). Pull-off forces remained constant (F=890±99N) and independent of assembly force (p=0.303), or contamination condition (p=0.192). No further seating of the head on the stem taper was seen for the 20th load cycle. Discussion. This study shows that contamination, even in very small quantities, can increase initial translation and rotation, which could initiate corrosion. This can be countered, to some extent by applying sufficiently high assembly forces. It is noted that no further seating was measurable by the 20th loading cycle for any assembly condition but this does not rule out increased cyclic motion, particularly in contaminated interfaces [5]. The final pull-off forces were independent of the magnitude of the assembly force but might rather be related to the maximum joint load, suggesting that the assembly force should be at least as great as the maximum joint load. To view tables/figures, please contact authors directly


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_1 | Pages 3 - 3
1 Feb 2015
Haddad F
Full Access

A multitude of different bearing combinations exist to recreate the artificial hip joint. To date, there is no particular ‘gold-standard’ total hip arthroplasty (THA) couple since none is faultless. Strategies to improve performance are aimed either at modifying the shape and design of components or their material properties. Wear particle generation is now well recognised as a cause of aseptic loosening which consistently features amongst the most common indication for revision THA and thus minimising wear lies at the cornerstone of developing bearing couples. However, history has shown the use of supposed newer and improved materials have not been without occasional catastrophic failure. Hard-on-hard bearings are theoretically more resistant to wear but component fracture and squeaking has been witnessed with ceramic-on-ceramic articulations whilst metal-on-metal articulations have been plagued by reports of pseudotumor and ALVAL formation. This has all led to resurgence in the hard-on-soft couple. More recently, corrosion at taper junctions has been identified as a significant factor in hip arthroplasty failure. Femoral head materials, surface changes or coatings may therefore have an increasing role to play. In 2005, a multi-center, prospective, assessor and patient-blinded, randomised control trial was initiated. This was designed as a three armed study with either cobalt-chrome or oxidized zirconium femoral heads articulating against highly cross-linked polyethylene (XLPE) liners and oxidized zirconium articulating against ultra-high molecular weight polyethylene (UHMWPE). Early reports that XLPE was significantly superior to UHMWPE when coupled with cobalt-chrome meant no patient involved in the study was approved to receive a couple of cobalt-chrome and UHMWPE since it was deemed to be a high wear group. We hypothesised that oxidized zirconium femoral heads would produce less linear wear than cobalt- chrome femoral heads at mid-term evaluation, whilst maintain similar outcomes when recording WOMAC, SF-36 and pain scores, and complication rates. All three groups were statistically comparable preoperatively and at five years when measuring normalised WOMAC, SF-36 and pain scale scores; all groups showed a statistically significant improvement in scores from baseline compared to at five years (p<0.001). There was no significant difference in mean femoral head penetration when either oxidized zirconium or cobalt-chrome where articulated with XLPE (p=0.1533) but a significant difference in mean femoral head penetration was observed between the group that had used UHMWPE and both the other groups which had used XLPE (p<0.001). There were no hips in which either acetabular or femoral osteolysis was observed. We have demonstrated that oxidized zirconium femoral heads are safe with low rates of wear when coupled with XLPE. However at five year follow-up, it appears that the choice of material of the acetabular bearing is more important than the choice of femoral head bearing. Further follow-up is needed in order to see if femoral head choice leads to a difference in outcome beyond 5 years as laboratory data suggests. Moreover the potential reduction of corrosion with ceramic or oxidized zirconium heads may yet also prove to be significant. It is likely that current and future data will lead us away from the use cobalt chrome heads towards alternatives that are less likely to be associated with corrosion or wear and osteolysis


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 148 - 148
1 Feb 2017
Groves D Fisher J Williams S
Full Access

Introduction. Geometric variations of the hip joint can give rise to abnormal joint loading causing increased stress on the articular cartilage, which may ultimately lead to degenerative joint disease. In-vitro simulations of total hip replacements (THRs) have been widely reported in the literature, however, investigations exploring the tribology of two contacting cartilage surfaces, and cartilage against metal surfaces using complete hip joint models are less well reported. The aim of this study was to develop an in-vitro simulation system for investigating and comparing the tribology of complete natural hip joints and hemiarthroplasties with THR tribology. The simulation system was used to assess natural porcine hip joints and porcine hemiarthroplasty hip joints. Mean friction factor was used as the primary outcome measure to make between-group comparisons, and comparisons with previously published tribological studies. Method. In-vitro simulations were conducted on harvested porcine tissue. A method was developed enabling natural acetabula to be orientated with varying angles of version and inclination, and natural femoral heads to be potted centrally with different orientations in all three planes. Acetabula were potted with 45° of inclination and in the complete joint studies, natural femoral heads were anatomically matched and aligned (n=5). Hemiarthroplasty studies (n=5) were conducted using cobalt chrome (CoCr) heads mounted on a spigot (Figure 1), size-matched to the natural head. Natural tissue was fixed using PMMA (polymethyl methacrylate) bone cement. A pendulum friction simulator (Simulator Solutions, UK), with a dynamic loading regime of 25–800N, ± 15° flexion-extension (FE) at 1 Hertz was used. The lubricant was a 25% (v/v) bovine serum. Axial loading and motion was applied through the femoral head and frictional torque was measured using a piezoelectric transducer, from which the friction factor was calculated. Results. The correct anatomical orientation and positioning was achieved enabling in-vitro simulation testing to be conducted on hemiarthroplasty and complete hip joint samples for two-hours. Mean friction increased rapidly followed by a continued gradual increase to ≈0.03 ± 0.00 in the complete joints, with the hemiarthroplasty group plateauing at ≈0.05 ± 0.01 (Figure 2). Mean friction factor was significantly lower (t-test; p < 0.05) in the complete natural joint group. Discussion. An in-vitro simulation system for the natural hip joint with controlled orientation of the femur and acetabulum was successfully developed and used to measure friction in complete porcine hip joints and porcine hip hemiarthroplasties. A non-linear increase in friction indicative of biphasic lubrication was observed in both groups with slower exudation of fluid from the complete joints compared to the hemiarthroplasties, inferring a quicker move towards solid-phase lubrication. Higher friction in the hemiarthroplasties, which was similar to that measured in-vitro in metal-on-polyethylene THRs, was most likely due to variable clearances between the non-conforming spherical metal head and aspherical acetabulum, causing poorer congruity and distribution of the load. This could in time lead to abrasive wear and cartilage degradation. This methodology could have an important role when investigating associations between hip geometric variations, interventions for hip disease/pathology, and risk factors for cartilage degeneration