header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

FEMORAL HEAD MATERIALS: NO DIFFERENCE IN OUTCOMES – OPPOSES

Current Concepts in Joint Replacement (CCJR) – Winter 2014



Abstract

A multitude of different bearing combinations exist to recreate the artificial hip joint. To date, there is no particular ‘gold-standard’ total hip arthroplasty (THA) couple since none is faultless. Strategies to improve performance are aimed either at modifying the shape and design of components or their material properties. Wear particle generation is now well recognised as a cause of aseptic loosening which consistently features amongst the most common indication for revision THA and thus minimising wear lies at the cornerstone of developing bearing couples. However, history has shown the use of supposed newer and improved materials have not been without occasional catastrophic failure. Hard-on-hard bearings are theoretically more resistant to wear but component fracture and squeaking has been witnessed with ceramic-on-ceramic articulations whilst metal-on-metal articulations have been plagued by reports of pseudotumor and ALVAL formation. This has all led to resurgence in the hard-on-soft couple.

More recently, corrosion at taper junctions has been identified as a significant factor in hip arthroplasty failure. Femoral head materials, surface changes or coatings may therefore have an increasing role to play.

In 2005, a multi-center, prospective, assessor and patient-blinded, randomised control trial was initiated. This was designed as a three armed study with either cobalt-chrome or oxidized zirconium femoral heads articulating against highly cross-linked polyethylene (XLPE) liners and oxidized zirconium articulating against ultra-high molecular weight polyethylene (UHMWPE). Early reports that XLPE was significantly superior to UHMWPE when coupled with cobalt-chrome meant no patient involved in the study was approved to receive a couple of cobalt-chrome and UHMWPE since it was deemed to be a high wear group.

We hypothesised that oxidized zirconium femoral heads would produce less linear wear than cobalt- chrome femoral heads at mid-term evaluation, whilst maintain similar outcomes when recording WOMAC, SF-36 and pain scores, and complication rates. All three groups were statistically comparable preoperatively and at five years when measuring normalised WOMAC, SF-36 and pain scale scores; all groups showed a statistically significant improvement in scores from baseline compared to at five years (p<0.001).

There was no significant difference in mean femoral head penetration when either oxidized zirconium or cobalt-chrome where articulated with XLPE (p=0.1533) but a significant difference in mean femoral head penetration was observed between the group that had used UHMWPE and both the other groups which had used XLPE (p<0.001). There were no hips in which either acetabular or femoral osteolysis was observed.

We have demonstrated that oxidized zirconium femoral heads are safe with low rates of wear when coupled with XLPE. However at five year follow-up, it appears that the choice of material of the acetabular bearing is more important than the choice of femoral head bearing. Further follow-up is needed in order to see if femoral head choice leads to a difference in outcome beyond 5 years as laboratory data suggests. Moreover the potential reduction of corrosion with ceramic or oxidized zirconium heads may yet also prove to be significant.

It is likely that current and future data will lead us away from the use cobalt chrome heads towards alternatives that are less likely to be associated with corrosion or wear and osteolysis.