Advertisement for orthosearch.org.uk
Results 1 - 20 of 201
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 149 - 149
1 May 2012
Mcdougall C Watts M Myers P Risebury M Jones M
Full Access

Many of the questionnaire based scoring systems (i.e. Rowe score) require some form of clinical assessment. These clinical components can be very difficult to perform on a large scale particularly when a patient lives a long distance from clinic. We have attempted to counter this problem by asking the patient to asses their own range of motion. The aim of this study was to test the agreement between patient and clinician measured shoulder external rotation range using a photo based self-assessment tool. Fifty-one professional and semi-professional rugby players were recruited to assess shoulder external rotation range. Each player was presented with a photo based shoulder external rotation range self-assessment tool, which featured four photos of progressive shoulder external rotation in 2 positions, 900 abduction (150, 300, 450 & 600 of external rotation) and 00 abduction (700, 800, 900 & 1000 of external rotation). The players were asked to perform active external rotation in these two positions and mark the image which best matched their maximal external rotation. The player was then independently assessed using the same tool, by a clinician. The difference between the player's and the clinician's assessment was analysed using a weighted Kappa test. The Kappa for the shoulder external rotation in 900 abduction was 0.75 and 0.71 for left and right respectively, and 0.57 and 0.55 for shoulder external rotation in 00 abduction. Thus, the strength of agreement between the player's and clinician's assessment of shoulder external rotation is good in 900 abduction and moderate in 00 abduction. These results demonstrate that the photo-based shoulder external rotation range self-assessment tool is a very useful addition to researchers' and clinicians' toolkits and may be most useful when a patient lives a great distance from/or is unable to attend a clinic


Bone & Joint Open
Vol. 5, Issue 11 | Pages 953 - 961
1 Nov 2024
Mew LE Heaslip V Immins T Ramasamy A Wainwright TW

Aims

The evidence base within trauma and orthopaedics has traditionally favoured quantitative research methodologies. Qualitative research can provide unique insights which illuminate patient experiences and perceptions of care. Qualitative methods reveal the subjective narratives of patients that are not captured by quantitative data, providing a more comprehensive understanding of patient-centred care. The aim of this study is to quantify the level of qualitative research within the orthopaedic literature.

Methods

A bibliometric search of journals’ online archives and multiple databases was undertaken in March 2024, to identify articles using qualitative research methods in the top 12 trauma and orthopaedic journals based on the 2023 impact factor and SCImago rating. The bibliometric search was conducted and reported in accordance with the preliminary guideline for reporting bibliometric reviews of the biomedical literature (BIBLIO).


Bone & Joint Open
Vol. 4, Issue 9 | Pages 696 - 703
11 Sep 2023
Ormond MJ Clement ND Harder BG Farrow L Glester A

Aims

The principles of evidence-based medicine (EBM) are the foundation of modern medical practice. Surgeons are familiar with the commonly used statistical techniques to test hypotheses, summarize findings, and provide answers within a specified range of probability. Based on this knowledge, they are able to critically evaluate research before deciding whether or not to adopt the findings into practice. Recently, there has been an increased use of artificial intelligence (AI) to analyze information and derive findings in orthopaedic research. These techniques use a set of statistical tools that are increasingly complex and may be unfamiliar to the orthopaedic surgeon. It is unclear if this shift towards less familiar techniques is widely accepted in the orthopaedic community. This study aimed to provide an exploration of understanding and acceptance of AI use in research among orthopaedic surgeons.

Methods

Semi-structured in-depth interviews were carried out on a sample of 12 orthopaedic surgeons. Inductive thematic analysis was used to identify key themes.


The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 1016 - 1020
9 Jul 2024
Trompeter AJ Costa ML

Aims

Weightbearing instructions after musculoskeletal injury or orthopaedic surgery are a key aspect of the rehabilitation pathway and prescription. The terminology used to describe the weightbearing status of the patient is variable; many different terms are used, and there is recognition and evidence that the lack of standardized terminology contributes to confusion in practice.

Methods

A consensus exercise was conducted involving all the major stakeholders in the patient journey for those with musculoskeletal injury. The consensus exercise primary aim was to seek agreement on a standardized set of terminology for weightbearing instructions.


Bone & Joint Open
Vol. 4, Issue 4 | Pages 250 - 261
7 Apr 2023
Sharma VJ Adegoke JA Afara IO Stok K Poon E Gordon CL Wood BR Raman J

Aims

Disorders of bone integrity carry a high global disease burden, frequently requiring intervention, but there is a paucity of methods capable of noninvasive real-time assessment. Here we show that miniaturized handheld near-infrared spectroscopy (NIRS) scans, operated via a smartphone, can assess structural human bone properties in under three seconds.

Methods

A hand-held NIR spectrometer was used to scan bone samples from 20 patients and predict: bone volume fraction (BV/TV); and trabecular (Tb) and cortical (Ct) thickness (Th), porosity (Po), and spacing (Sp).


Bone & Joint Research
Vol. 13, Issue 9 | Pages 507 - 512
18 Sep 2024
Farrow L Meek D Leontidis G Campbell M Harrison E Anderson L

Despite the vast quantities of published artificial intelligence (AI) algorithms that target trauma and orthopaedic applications, very few progress to inform clinical practice. One key reason for this is the lack of a clear pathway from development to deployment. In order to assist with this process, we have developed the Clinical Practice Integration of Artificial Intelligence (CPI-AI) framework – a five-stage approach to the clinical practice adoption of AI in the setting of trauma and orthopaedics, based on the IDEAL principles (https://www.ideal-collaboration.net/). Adherence to the framework would provide a robust evidence-based mechanism for developing trust in AI applications, where the underlying algorithms are unlikely to be fully understood by clinical teams.

Cite this article: Bone Joint Res 2024;13(9):507–512.


Bone & Joint Open
Vol. 3, Issue 10 | Pages 777 - 785
10 Oct 2022
Kulkarni K Shah R Mangwani J Dias J

Aims

Deprivation underpins many societal and health inequalities. COVID-19 has exacerbated these disparities, with access to planned care falling greatest in the most deprived areas of the UK during 2020. This study aimed to identify the impact of deprivation on patients on growing waiting lists for planned care.

Methods

Questionnaires were sent to orthopaedic waiting list patients at the start of the UK’s first COVID-19 lockdown to capture key quantitative and qualitative aspects of patients’ health. A total of 888 respondents were divided into quintiles, with sampling stratified based on the Index of Multiple Deprivation (IMD); level 1 represented the ‘most deprived’ cohort and level 5 the ‘least deprived’.


Bone & Joint Open
Vol. 2, Issue 8 | Pages 583 - 593
2 Aug 2021
Kulkarni K Shah R Armaou M Leighton P Mangwani J Dias J

Aims

COVID-19 has compounded a growing waiting list problem, with over 4.5 million patients now waiting for planned elective care in the UK. Views of patients on waiting lists are rarely considered in prioritization. Our primary aim was to understand how to support patients on waiting lists by hearing their experiences, concerns, and expectations. The secondary aim was to capture objective change in disability and coping mechanisms.

Methods

A minimum representative sample of 824 patients was required for quantitative analysis to provide a 3% margin of error. Sampling was stratified by body region (upper/lower limb, spine) and duration on the waiting list. Questionnaires were sent to a random sample of elective orthopaedic waiting list patients with their planned intervention paused due to COVID-19. Analyzed parameters included baseline health, change in physical/mental health status, challenges and coping strategies, preferences/concerns regarding treatment, and objective quality of life (EuroQol five-dimension questionnaire (EQ-5D), Generalized Anxiety Disorder 2-item scale (GAD-2)). Qualitative analysis was performed via the Normalization Process Theory.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 21 - 21
10 Feb 2023
McDonald A Maling A Puttick M
Full Access

Instant messaging via WhatsApp is used within hospital teams. Group messaging can lead to efficient and non-hierarchical communication. Despite being end-to-end encrypted, WhatsApp is owned by Facebook, raising concerns regarding data security. The aims of this study were: 1) to record the prevalence of WhatsApp group instant messaging amongst clinical teams; 2) to ascertain clinician attitudes towards use of instant messaging, 3) to gauge clinicians’ awareness of best practice regarding mobile data protection and 4) to create a practical guideline based off available literature that can be used to by clinicians to improve data security practice. Over a two-week period, clinical nurse specialists in the Auckland District Health Board Department of Orthopaedics retrospectively completed a blind audit of all messaging activity across the five teams WhatsApp group message threads, recording quantity of messages sent and the nature of the messages. Concurrently individuals in these WhatsApp groups completed an anonymous survey of their use of WhatsApp and their awareness of local data security policies and practice. A guideline adapted from available literature was created to compare current practice to recommended standards and subsequently adopted into local policy. 1360 messages were sent via WhatsApp in a two-week period. 384 (28%) of the messages contained patient identifiable data. Thirty-six photos were shared. Participants rated use of WhatsApp at 9.1/10 – extremely beneficial. Sixty-five per cent of clinicians reported they had not read or were unaware of the ADHB policies regarding mobile devices and information privacy and security. WhatsApp use is widespread within the Orthopaedic department and is the preferred platform of communication with many perceived benefits. Data security is a risk and implementation of an appropriate guideline to assist clinicians in achieving best practice is crucial to ensure patient data remains protected


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_4 | Pages 15 - 15
3 Mar 2023
Fahey E Elsheikh M Davey M Rowan F Cassidy T Cleary M
Full Access

Aims. The COVID-19 pandemic has triggered transformative change in how clinicians interact with their patients. There has been a shift away from face-to-face toward virtual consultations. However, the evidence to support this change in practice is unclear. The aim of this study was to systematically review the evidence base for virtual consultations for orthopaedics. Materials and Methods. Two independent reviewers performed a literature search based on PRISMA guidelines, utilizing the MEDLINE, EMBASE and Scopus databases. Only studies reporting outcomes following the use of telemedicine for diagnosis, consultation, rehabilitation, and follow-up were included. Outcomes analyzed were: 1) Patient and clinician satisfaction, 2) Clinical outcome measures, and 3) Cost analysis of traditional vs teleconsultation. Results. A total of 41 studies were included. Fifteen studies compared clinical outcomes of telemedicine against a matched traditional cohort. Of these 15 studies, two demonstrated non-inferiority, nine showed no statistically significant difference and four found telemedicine to be superior. Eleven studies recorded patient reported outcomes, which demonstrated high patient satisfaction. Nine studies reported decreased costs when telemedicine was compared to traditional care. The remaining 6 studies had varied aims and methodologies that didn't fit well with any of these sub-headings. Conclusion. While the available evidence is limited, the studies assessed in this systematic review show that telemedicine can deliver high quality healthcare with good clinical outcomes and high patient satisfaction in a cost effective manner. Further studies are required to validate telemedicine for specific trauma and orthopaedic diagnoses


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 118 - 118
23 Feb 2023
Zhou Y Dowsey M Spelman T Choong P Schilling C
Full Access

Approximately 20% of patients feel unsatisfied 12 months after primary total knee arthroplasty (TKA). Current predictive tools for TKA focus on the clinician as the intended user rather than the patient. The aim of this study is to develop a tool that can be used by patients without clinician assistance, to predict health-related quality of life (HRQoL) outcomes 12 months after total knee arthroplasty (TKA). All patients with primary TKAs for osteoarthritis between 2012 and 2019 at a tertiary institutional registry were analysed. The predictive outcome was improvement in Veterans-RAND 12 utility score at 12 months after surgery. Potential predictors included patient demographics, co-morbidities, and patient reported outcome scores at baseline. Logistic regression and three machine learning algorithms were used. Models were evaluated using both discrimination and calibration metrics. Predictive outcomes were categorised into deciles from 1 being the least likely to improve to 10 being the most likely to improve. 3703 eligible patients were included in the analysis. The logistic regression model performed the best in out-of-sample evaluation for both discrimination (AUC = 0.712) and calibration (gradient = 1.176, intercept = -0.116, Brier score = 0.201) metrics. Machine learning algorithms were not superior to logistic regression in any performance metric. Patients in the lowest decile (1) had a 29% probability for improvement and patients in the highest decile (10) had an 86% probability for improvement. Logistic regression outperformed machine learning algorithms in this study. The final model performed well enough with calibration metrics to accurately predict improvement after TKA using deciles. An ongoing randomised controlled trial (ACTRN12622000072718) is evaluating the effect of this tool on patient willingness for surgery. Full results of this trial are expected to be available by April 2023. A free-to-use online version of the tool is available at . smartchoice.org.au.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 44 - 44
10 Feb 2023
Kollias C Neville E Vladusic S McLachlan L
Full Access

Specific brace-fitting complications in idiopathic congenital talipes equinovarus (CTEV) have been rarely described in published series, and usually focus on non-compliance. Our primary aim was to compare the rate of persistent pressure sores in patients fitted with Markell boots and Mitchell boots. Our additional aims were to describe the frequency of other brace fitting complications and identify age trends in these complications. A retrospective analysis of medical files of 247 idiopathic CTEV patients born between 01/01/2010 - 01/01/2021 was performed. Data was collected using a REDCap database. Pressure sores of sufficient severity for clinician to recommend time out of brace occurred in 22.9% of Mitchell boot and 12.6% of Markell boot patients (X. 2. =6.9, p=0.009). The overall rate of bracing complications was 51.4%. 33.2% of parents admitted to bracing non-compliance and 31.2% of patients required re-casting during the bracing period for relapse. For patients with a minimum follow-up of age 6 years, 44.2% required tibialis anterior tendon transfer. Parents admitting to non-compliance were significantly more likely to have a child who required tibialis anterior tendon transfer (X. 2. =5.71, p=0.017). Overall rate of capsular release (posteromedial release or posterior release) was 2.0%. Neither medium nor longterm results of Ponseti treatment in the Australian and New Zealand clubfoot have been published. Globally, few publications describe specific bracing complications in clubfoot, despite this being a notable challenge for clinicians and families. Recurrent pressure sores is a persistent complication with the Mitchell boots for patients in our center. In our population of Australian clubfoot patients, tibialis anterior tendon transfer for relapse is common, consistent with the upper limit of tibialis anterior tendon transfer rates reported globally


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 12 - 12
1 Dec 2022
Shadgan B Kwon B
Full Access

Despite advances in treating acute spinal cord injury (SCI), measures to mitigate permanent neurological deficits in affected patients are limited. Augmentation of mean arterial blood pressure (MAP) to promote blood flow and oxygen delivery to the injured cord is one of the only currently available treatment options to potentially improve neurological outcomes after acute spinal cord injury (SCI). However, to optimize such hemodynamic management, clinicians require a method to measure and monitor the physiological effects of these MAP alterations within the injured cord in real-time. To address this unmet clinical need, we developed a series of miniaturized optical sensors and a monitoring system based on multi-wavelength near-infrared spectroscopy (MW-NIRS) technique for direct transdural measurement and continuous monitoring of spinal cord hemodynamics and oxygenation in real-time. We conducted a feasibility study in a porcine model of acute SCI. We also completed two separate animal studies to examine the function of the sensor and validity of collected data in an acute experiment and a seven-day post-injury survival experiment. In our first animal experiment, nine Yorkshire pigs underwent a weight-drop T10 vertebral level contusion-compression injury and received episodes of ventilatory hypoxia and alterations in MAP. Spinal cord hemodynamics and oxygenation were monitored throughout by a transdural NIRS sensor prototype, as well as an invasive intraparenchymal (IP) sensor as a comparison. In a second experiment, we studied six Yucatan miniature pigs that underwent a T10 injury. Spinal cord oxygenation and hemodynamics parameters were continuously monitored by an improved NIRS sensor over a long period. Episodes of MAP alteration and hypoxia were performed acutely after injury and at two- and seven-days post-injury to simulate the types of hemodynamic changes patients experience after an acute SCI. All NIRS data were collected in real-time, recorded and analyzed in comparison with IP measures. Noninvasive NIRS parameters of tissue oxygenation were highly correlated with invasive IP measures of tissue oxygenation in both studies. In particular, during periods of hypoxia and MAP alterations, changes of NIRS-derived spinal cord tissue oxygenation percentage were significant and corresponded well with the changes in spinal cord oxygen partial pressures measured by the IP sensors (p < 0.05). Our studies indicate that a novel optical biosensor developed by our team can monitor real-time changes in spinal cord hemodynamics and oxygenation over the first seven days post-injury and can detect local tissue changes that are reflective of systemic hemodynamic changes. Our implantable spinal cord NIRS sensor is intended to help clinicians by providing real-time information about the effects of hemodynamic management on the injured spinal cord. Hence, our novel NIRS system has the near-term potential to impact clinical care and improve neurologic outcomes in acute SCI. To translate our studies from bench to bedside, we have developed an advanced clinical NIRS sensor that is ready to be implanted in the first cohort of acute SCI patients in 2022


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 100 - 100
1 Dec 2022
Du JT Toor J Abbas A Shah A Koyle M Bassi G Wolfstadt J
Full Access

In the current healthcare environment, cost containment has become more important than ever. Perioperative services are often scrutinized as they consume more than 30% of North American hospitals’ budgets. The procurement, processing, and use of sterile surgical inventory is a major component of the perioperative care budget and has been recognized as an area of operational inefficiency. Although a recent systematic review supported the optimization of surgical inventory reprocessing as a means to increase efficiency and eliminate waste, there is a paucity of data on how to actually implement this change. A well-studied and established approach to implementing organizational change is Kotter's Change Model (KCM). The KCM process posits that organizational change can be facilitated by a dynamic 8-step approach and has been increasingly applied to the healthcare setting to facilitate the implementation of quality improvement (QI) interventions. We performed an inventory optimization (IO) to improve inventory and instrument reprocessing efficiency for the purpose of cost containment using the KCM framework. The purpose of this quality improvement (QI) project was to implement the IO using KCM, overcome organizational barriers to change, and measure key outcome metrics related to surgical inventory and corresponding clinician satisfaction. We hypothesized that the KCM would be an effective method of implementing the IO. This study was conducted at a tertiary academic hospital across the four highest-volume surgical services - Orthopedics, Otolaryngology, General Surgery, and Gynecology. The IO was implemented using the steps outlined by KCM (Figure 1): 1) create coalition, 2) create vision for change, 3) establish urgency, 4) communicate the vision, 5) empower broad based action, 6) generate general short term wins, 7) consolidate gains, and 8) anchor change. This process was evaluated using inventory metrics - total inventory reduction and depreciation cost savings; operational efficiency metrics - reprocessing labor efficiency and case cancellation rate; and clinician satisfaction. The implementation of KCM is described in Table 1. Total inventory was reduced by 37.7% with an average tray size reduction of 18.0%. This led to a total reprocessing time savings of 1333 hours per annum and labour cost savings of $39 995 per annum. Depreciation cost savings was $64 320 per annum. Case cancellation rate due to instrument-related errors decreased from 3.9% to 0.2%. The proportion of staff completely satisfied with the inventory was 1.7% pre-IO and 80% post-IO. This was the first study to show the success of applying KCM to facilitate change in the perioperative setting with respect to surgical inventory. We have outlined the important organizational obstacles faced when making changes to surgical inventory. The same KCM protocol can be followed for optimization processes for disposable versus reusable surgical device purchasing or perioperative scheduling. Although increasing efforts are being dedicated to quality improvement and efficiency, institutions will need an organized and systematic approach such as the KCM to successfully enact changes. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_3 | Pages 52 - 52
1 Mar 2021
Karatzas N Corban J Bergeron S Fevens T Martineau P
Full Access

A quick, portable and reliable tool for predicting ACL injury could be an invaluable instrument for athletes, coaches, and clinicians. The gold standard, Vicon motion analysis, despite having a high sensitivity and risk specificity, is not practical for coaches or clinicians to use on a routine basis for assessing athletes. The present study validated the Kinect device to the currently used method of chart review in predicting athletes at high risk. A total of 114 participants were recruited from both the men and women McGill Varsity Sports Program. 69 males and 45 female athletes were evaluated to assess the specificity and sensitivity of the Kinect device in predicting athletes at high risk of injury. Each athlete performed three-drop vertical jumps off of a 31cm box and the data was recorded and risk score was generated. Generation of this data is done by our uniquely programmed software that measures landing angles at different time frames and compares live results to previously known data of injured athletes. A chart review was then performed by a clinician, blinded to these risk scores, to risk stratify the same athletes as high or low risk of ACL injury based on their medical charts. Data reviewed incorporated pre-season physical exams along with documented known risk factors for ACL injury, including previous knee injuries, family history of ACL injury, gender, sport, and BMI. Positive risk factors were assigned one point while negative risk factors assigned zero points. The Kinect device, powered by our software, identified 40 athletes as having a high-risk score (> 55%), and subsequently, five (4.39%) sustained an ACL injury by the end of their respective sport seasons. Two male and two female basketball players along with one male soccer player sustained non-contact ACL injuries. Given that all five of the injured athletes were in the cohort of 40 identified as high risk by the Kinect, this yielded a sensitivity of 100% for the device. As for the specificity, the Kinect computed 35 false positives, yielding a specificity of 68% for the duration of the study. The medical chart review identified 36 athletes as high risk and 60 as being low risk of ACL injury. Four of the athletes that sustained an ACL injury were in the group of 36 identified as high risk by the clinician. However, one of the five participants who sustained an ACL injury was not captured by the medical chart assessment, yielding a sensitivity of 80% and a specificity of 65% for the clinician. When it comes to injury prediction, it is preferred to have a high sensitivity even if the specificity is slightly lower as this ensures that all athletes who are at risk will be captured. Our data demonstrated that the chart analysis provided one false negative and led to missing one high-risk athlete who ended up sustaining an ACL injury. Based on the comparison of sensitivity and specificity, the Kinect system provides a slightly better predictive analysis for predicting ACL injury compared to chart review


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 37 - 37
1 Dec 2022
Moisan P Montreuil J Bernstein M Hart A Tanzer M
Full Access

Although day surgery has a good patient satisfaction and safety profile, accurate episode-of-care costs (EOCC) calculation for of this procedure compared to standard same-day admission (SDA), while considering functional outcomes, is not well known. This study assesses the EOCC for patients with a THA while comparing DS and Same Day Admission (SDA) (with a 1-day hospitalization) pathways. The episode-of-care cost (EOCC) of 50 consecutive day surgery and SDA patients who underwent a THA was evaluated. The episode-of-care cost was determined using a bottom-up Time Driven- Activity Based Funding method. Functional outcomes were measured using preoperative and postoperative Harris Hip Score (HHS). Overall, the SDA THA cost 11% more than a DS THA. The mean total EOCC of DS THA was 9 672 CAD compared to 10 911 CAD in the SDA THA group. Both groups showed an improvement in HHS score following the procedure but patients in the DS group had a significantly higher postoperative HHS score and a significantly greater improvement in their HHS score postoperatively. Day surgery THA is cost-effective, safe and associated with high patient satisfaction due to functional improvement. Providing policymakers the information to develop optimal financing methods is paramount for clinicians wishing to develop modern protocols, increase productivity while providing the optimal care for patients


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_15 | Pages 55 - 55
7 Nov 2023
Mkombe N Kgabo R
Full Access

Orthopaedic injuries in the knee are often associated with vascular injury. When these vascular injuries are missed devastating there are devastating outcomes like limb ablation. Pulse examination in these patients is not sensitive to exclude vascular injuries. That often lead to clinicians opting for Computed Tomography Angiogram (CTA) to exclude vascular. this usually leads to a burden in Radiology Department. This study aimed to evaluate the prevalence of vascular injury in patient with orthopaedic injury in the knee. The computed tomography (CT) done in patients with distal femur fracture, knee dislocation and proximal tibia fractures were retrieved from the picture archiving and comunication system (PACS). The CTs were done between June 2017 and June 2022. The computed tomography angiogram (CTA) reports were reviewed to determine cases that vascular injury. A sample size of 511 cases was collected. 386 cases were done CTA and 125 cases were not done CTA. There were 218 tibial plateau fractures, 79 knee dislocations, 72 distal metaphyseal femur fractures, 61 floating knees, 55 distal femure intraarticular and 26 proximal metaphyseal tibia fractures. The mechanisms of injury in these were gunshot, fall from standing height, fall from height, MVA, MBA, PVA and sports. Prevalance was 9.17% (47) of the total injuries in the knee. Prevalance in patients who were sent for CTA was 12.08%. Routine CTA in patients with injuries in the knee is not recomended. The use of ankle brachial index may decrease the number of CTA done


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 69 - 69
10 Feb 2023
Tong Y Holmes S Sefton1 A
Full Access

There is conjecture on the optimal timing to administer bisphosphonate therapy following operative fixation of low- trauma hip fractures. Factors include recommendations for early opportunistic commencement of osteoporosis treatment, and clinician concern regarding the effect of bisphosphonates on fracture healing. We performed a systematic review and meta-analysis to determine if early administration of bisphosphonate therapy within the first month post-operatively following proximal femur fracture fixation is associated with delay in fracture healing or rates of delayed or non-union. We included randomised controlled trials examining fracture healing and union rates in adults with proximal femoral fractures undergoing osteosynthesis fixation methods and administered bisphosphonates within one month of operation with a control group. Data was pooled in meta-analyses where possible. The Cochrane Risk of Bias Tool and the GRADE approach were used to assess validity. For the outcome of time to fracture union, meta-analysis of three studies (n= 233) found evidence for earlier average time to union for patients receiving early bisphosphonate intervention (MD = −1.06 weeks, 95% CI −2.01 – −0.12, I. 2. = 8%). There was no evidence from two included studies comprising 718 patients of any difference in rates of delayed union (RR 0.61, 95% CI 0.25–1.46). Meta-analyses did not demonstrate a difference in outcomes of mortality, function, or pain. We provide low-level evidence that there is no reduction in time to healing or delay in bony union for patients receiving bisphosphonates within one month of proximal femur fixation


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_8 | Pages 17 - 17
10 May 2024
Morris H Shah S Murray R
Full Access

Introduction. The health sector contributes the equivalent of 4.4% of global net emissions to the climate carbon footprint. It has been suggested that between 20% and 70% of health care waste originates from a hospital's operating room, the second greatest component of this are the textiles used, and up to 90% of waste is sent for costly and unneeded hazardous waste processing. Waste from common orthopaedic operations was quantified, the carbon footprint calculated, and cost of disposal assessed. A discussion of the circular economy of textiles, from the author of the textile guidance to the Green Surgery Report follows. Methods. The amount of waste generated from a variety of trauma and elective orthopaedic operations was calculated across a range of hospital sites. The waste was separated primarily into clean and contaminated, paper or plastic. The carbon footprint and the cost of disposal across the hospital sites was subsequently calculated. Results. Elective procedures can generate up to 16.5kg of plastic waste per procedure. Practices such as double draping the patient contribute to increasing the quantity of waste. The cost to process waste vary widely between hospital sites, waste disposal contractors and the method of waste disposal. Conclusion. This study sheds new light on the environmental impact of waste produced in trauma and elective orthopaedic procedures. Mitigating the environmental impact of the operating room requires a collective drive for a culture change to sustainability and social responsibility. Each clinician can impact upon the carbon footprint of their operating theatre. Consideration should be given to the type of textiles used within the operating theatre


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_4 | Pages 3 - 3
3 Mar 2023
Roy K Joshi P Ali I Shenoy P Syed A Barlow D Malek I Joshi Y
Full Access

Classifying trochlear dysplasia (TD) is useful to determine the treatment options for patients suffering from patellofemoral instability (PFI). There is no consensus on which classification system is more reliable and reproducible for this purpose to guide clinicians in order to treat PFI. There are also concerns about validity of the Dejour classification (DJC), which is the most widely used classification for TD, having only a fair reliability score. The Oswestry-Bristol classification (OBC) is a recently proposed system of classification of TD and the authors report a fair-to-good interobserver agreement and good-to-excellent intra-observer agreement in the assessment of TD. The aim of this study was to compare the reliability and reproducibility of these two classifications. 6 assessors (4 consultants and 2 registrars) independently evaluated 100 magnetic resonance axial images of the patella-femoral joint for TD and classified them according to OBC and DJC. These assessments were again repeated by all raters after 4 weeks. The inter and intra-observer reliability scores were calculated using Cohen's kappa and Cronbach's alpha. Both classifications showed good to excellent interobserver reliability with high alpha scores. The OBC classification showed a substantial intra-observer agreement (mean kappa 0.628)[p<0.005] whereas the DJC showed a moderate agreement (mean kappa 0.572) [p<0.005]. There was no significant difference in the kappa values when comparing the assessments by consultants to those by registrars, in either classification systems. This large study from a non-founding institute shows both classification systems to be reliable for classifying TD based on magnetic resonance axial images of the patella-femoral joint, with the simple to use OBC having a higher intra-observer reliability score compared to the DJC