We have evaluated the use of a synthetic porous
Introduction:. Due to absence of fusion in guided-growth devices for EOS (growing rods, Shilla, LSZ) movement of the rods against their attachment is possible resulting in wear debris formation. It is important to understand the wear resistance of materials used in these devices under appropriate conditions. Aim:. The aim of our work was to investigate wear resistance of titanium alloy Ti-6Al-4V and superelastic Nitinol. Nitinol has been used recently for correcting scoliosis and may provide a better and more gradual correction than other materials. Methodology:. Wear tests were conducted using pin-on-disc configuration in diluted calf serum, as required by ISO 18192 for spinal devices. Pins were made of titanium alloy Ti-6Al-4V and Nitinol (simulation of rods material). All discs were made of Ti6-Al-4V alloy. Results and Discussion:. Superelastic Nitinol has better wear resistance since its volume wear loss is 100 times less than that of Ti-6Al-4V. However volumetric loss from Nitinol/Ti-6Al-4V friction pair (sum of both components) was found to be just about 3 times less in comparison with Ti-6Al-4V/Ti-6Al-4V pair due to wear of the titanium component. Deposition of
We evaluated the efficacy of Cite this article: