header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Spine

INVITRO INVESTIGATION OF TITANIUM AND SUPERELASTIC NITINOL WEAR RESISTANCE FOR GUIDED-GROWTH DEVICES FOR EARLY ONSET SCOLIOSIS (EOS) TREATMENT

British Scoliosis Society (BSS) Annual Meeting



Abstract

Introduction:

Due to absence of fusion in guided-growth devices for EOS (growing rods, Shilla, LSZ) movement of the rods against their attachment is possible resulting in wear debris formation. It is important to understand the wear resistance of materials used in these devices under appropriate conditions.

Aim:

The aim of our work was to investigate wear resistance of titanium alloy Ti-6Al-4V and superelastic Nitinol. Nitinol has been used recently for correcting scoliosis and may provide a better and more gradual correction than other materials.

Methodology:

Wear tests were conducted using pin-on-disc configuration in diluted calf serum, as required by ISO 18192 for spinal devices. Pins were made of titanium alloy Ti-6Al-4V and Nitinol (simulation of rods material). All discs were made of Ti6-Al-4V alloy.

Results and Discussion:

Superelastic Nitinol has better wear resistance since its volume wear loss is 100 times less than that of Ti-6Al-4V. However volumetric loss from Nitinol/Ti-6Al-4V friction pair (sum of both components) was found to be just about 3 times less in comparison with Ti-6Al-4V/Ti-6Al-4V pair due to wear of the titanium component. Deposition of ceramic coatings of titanium nitride (TiN) and diamond like carbon (DLC) significantly improves the wear resistance of Nitinol/Ti-6Al-4V friction pair due to effective protection of Ti-6Al-4V alloy component from the wear damage. Wear of Nitinol used for spinal rods is not expected to be as great as the wear of titanium, additionally it is possible to reduce the wear of Nitinol/titanium combination further by using coatings on the titanium alloy.

Conflict Of Interest Statement: No conflict of interest.