Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_2 | Pages 17 - 17
1 Feb 2018
Thorpe A Vickers L Charlton F Cole A Chiverton N Sammon C Le Maitre C
Full Access

Background. Intervertebral disc (IVD) degeneration is a major cause of Low back pain (LBP). We have reported an injectable hydrogel (NPgel), which following injection into bovine NP explants, integrates with NP tissue and promotes NP cell differentiation of delivered mesenchymal stem cells (MSCs) without growth factors. Here we investigated the injection of NPgel+MSCs into bovine NP explants under degenerate culture conditions to mimic the in vivo environment of the degenerate IVD. Methods. hMSCs were incorporated within liquid NPgel and injected into bovine NP explants alongside controls. Explants were cultured for 6 weeks under hypoxia (5%) with ± calcium 5.0mM CaCl. 2. or IL-1β individually or in combination to mimic the degenerate microenvironment. Cell viability was assessed by caspase 3 immunohistochemistry. Histological and immunohistochemical analysis was performed to investigate altered matrix synthesis and matrix degrading enzyme expression. Results. CFSe positive hMSCs were identified in all NPgel injected explants and cell viability was maintained. The NPgel integrated with NP tissue and hMSCs produced matrix components: aggrecan, collagen type II and chondroitin sulphate in standard and degenerate culture conditions. Increased cellular immunopositivty for aggrecan and collagen type II as well as decreased cellular immunopositivity for degrading enzyme expression was observed within NP tissue removed from the injection site. Conclusion. MSCs incorporated within NPgel could be used to regenerate the NP and restore the healthy NP phenotype of degenerate NP cells as a treatment strategy for LBP. We are currently investigating the survival and differentiation capacity of hMSCs delivered via the NPgel into degenerate human NP explants and thus ascertain the future clinical success of this therapy. Conflicts of Interest: None. Funding: BMRC, MERI Sheffield Hallam University


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_10 | Pages 21 - 21
1 May 2017
Thorpe A Vickers L Sammon C Le Maitre C
Full Access

Background. Degeneration of the intervertebral disc (IVD) is a major cause of Low back pain. We have recently reported a novel, injectable liquid L-pNIPAM-co-DMAc hydrogel (NPgel), which promote differentiation of MSCs to nucleus pulposus (NP) cells without the need for additional growth factors. Here, we investigated the behaviour of hMSCs incorporated within the hydrogel injected into NP tissue. Methods. hMSCs were injected either alone or within NPgel, into bovine NP tissue explants and maintained at 5% O. 2. for up to 6wks. Media alone and acellular NPgel were also injected into NP explants to serve as controls. Cell viability was assessed by Caspase 3 immunohistochemistry and the phenotype of injected hMSC was assessed by histology and immunohistochemistry. Mechanical properties were also assessed via dynamic mechanical analysis (DMA). Results. No significant difference in the elastic modulus was observed between NPgel injected NP tissue and media injected controls. CFSe positive hMSCs were identified in all injected tissue samples and cell viability was maintained. Where hMSCs were delivered via NPgel, the hydrogel integrated with native NP tissue and cells producing NP matrix components: aggrecan; collagen type II and chondroitin sulphate. Conclusion. hMSC incorporated within L-pNIPAM-co-DMAc hydrogel and injected into NP explants, integrate with native NP tissue and promote differentiation towards the NP phenotype; thus potentially could be used to regenerate the NP as a treatment strategy for LBP. No conflict of interest. Funding: BMRC, MERI Sheffield Hallam University